login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A075677 Reduced Collatz function R applied to the odd integers: a(n) = R(2n-1), where R(k) = (3k+1)/2^r, with r as large as possible. 9
1, 5, 1, 11, 7, 17, 5, 23, 13, 29, 1, 35, 19, 41, 11, 47, 25, 53, 7, 59, 31, 65, 17, 71, 37, 77, 5, 83, 43, 89, 23, 95, 49, 101, 13, 107, 55, 113, 29, 119, 61, 125, 1, 131, 67, 137, 35, 143, 73, 149, 19, 155, 79, 161, 41, 167, 85, 173, 11, 179, 91, 185, 47, 191, 97, 197 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The even terms a(2i-2) = 6i+5 = A016969(i). The odd terms are the same as A065677. Note that this sequence is A016789 with all factors of 2 removed from each term. Also note that a(4i-1) = a(i). No multiple of 3 is in this sequence. See A075680 for the number of iterations of R required to yield 1.

REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, E16.

J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see p. 57, also (90-9), p. 306.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23.

Eric Weisstein's World of Mathematics, Collatz Problem

Index entries for sequences related to 3x+1 (or Collatz) problem

FORMULA

a(n) = A000265(6*n-2). - Reinhard Zumkeller, Jan 08 2014

EXAMPLE

a(11) = 1 because 21 is the 11th odd number and R(21) = 64/64 = 1.

MAPLE

f:=proc(n) local t1;

if n=1 then RETURN(1) else

t1:=3*n+1;

while t1 mod 2 = 0 do t1:=t1/2; od;

RETURN(t1); fi;

end;

(from N. J. A. Sloane, Jan 21 2011)

MATHEMATICA

nextOddK[n_] := Module[{m=3n+1}, While[EvenQ[m], m=m/2]; m]; (* assumes odd n *) Table[nextOddK[n], {n, 1, 200, 2}]

PROG

(PARI) a(n)=n+=2*n-1; n>>valuation(n, 2) \\ Charles R Greathouse IV, Jul 05 2013

(Haskell)

a075677 = a000265 . subtract 2 . (* 6) -- Reinhard Zumkeller, Jan 08 2014

CROSSREFS

Cf. A016789, A016969, A065677, A075680.

Sequence in context: A131782 A242060 A185953 * A051853 A159074 A147414

Adjacent sequences:  A075674 A075675 A075676 * A075678 A075679 A075680

KEYWORD

easy,nonn

AUTHOR

T. D. Noe, Sep 25 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 18 07:26 EST 2014. Contains 252098 sequences.