%I #10 Jun 26 2022 03:17:46
%S 1,63,2394,71442,1848987,43615341,964942308,20385709344,416206043253,
%T 8280505692459,161494678323342,3101091077181006,58823743379417199,
%U 1104995938593100617,20595841868175915096
%N Sixth column of triangle A075498.
%C The e.g.f. given below is Sum_{m=0..5} A075513(6,m)*exp(3*(m+1)*x)/5!.
%F a(n) = A075498(n+6, 6) = (3^n)*S2(n+6, 6) with S2(n, m) := A008277(n, m) (Stirling2).
%F a(n) = Sum_{m=0..5} A075513(6, m)*((m+1)*3)^n/5!.
%F G.f.: 1/Product_{k=1..6} (1 - 3*k*x).
%F E.g.f.: (d^6/dx^6)(((exp(3*x)-1)/3)^6)/6! = (-exp(3*x) + 160*exp(6*x) - 2430*exp(9*x) + 10240*exp(12*x) - 15625*exp(15*x) + 7776*exp(18*x))/5!.
%Y Cf. A008277, A075498, A075513, A075515, A075906.
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Oct 02 2002