%I #8 Jan 01 2018 04:22:09
%S 1,45,1260,28350,563031,10333575,179866170,3016747800,49263275061,
%T 788796913905,12445575859080,194186867360850,3004103990159091,
%U 46168557763591035,705914973500103990,10750288516418083500
%N Fifth column of triangle A075498.
%C The e.g.f. given below is Sum_{m=0..4} A075513(5,m)*exp(3*(m+1)*x)/4!.
%F a(n) = A075498(n+5, 5) = (3^n)*S2(n+5, 5) with S2(n, m) := A008277(n, m) (Stirling2).
%F a(n) = Sum_{m=0..4} A075513(5, m)*exp((m+1)*3)^n/4!.
%F G.f.: 1/Product_{k=1..5} (1 - 3*k*x).
%F E.g.f.: (d^5/dx^5)(((exp(3*x)-1)/3)^5)/5! = (exp(3*x) - 64*exp(6*x) + 486*exp(9*x) - 1024*exp(12*x) + 625*exp(15*x))/4!.
%Y Cf. A028085, A075516.
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Oct 02 2002