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On a Certain Family of Sidi Polynomials

Wolfdieter Lang '

Abstract

A family of a Sidi polynomials system {PSx(n, )}, for integer N, and their coefficient number
triangles {T'Sn(n, m)}, are studied. For all N the row sums of the triangles are n!. The exponential
generating functions of the triangles are shown to involve derivatives of the Lambert W -function.

1 Introduction

A special family of Sidi’s one variable polynomial systems [3] which originally depended on three
integers, is here reduced to only one integer N and studied in detail.
This family of polynomial systems is denoted by {PSy(n,z)},>0.The corresponding number triangles
TSy and their exponential generating functions (e.g.f.) ETSy are computed. For N = 0 these e.g.f.
s involve the derivative of Lambert’s W-function. For non-vanishing N the derivative of the N-fold
convolution of W(—z)/(—z) = exp(—W (—x)) enters.
The Jabotinsky type Sheffer polynomials (1, —W (—x)) are essential for evaluating the case of non-
vanishing N. They are identified with special Abel polynomials.
A salient feature of this N—family of Sidi polynomials is the N independent row sum n! for row n of
each triangle T'Sy.
The interest in this work started with the N = 0 triangle OEIS [1] A075513 after a question by Harlan
J. Brothers for a proof of the row sums.

2 Sidi N-polynomials and number triangles
The general Sidi polynomials [3], Theorem 4.2., p. 862, are for integers k, n, m, with & > 0 and m > 0
k ke ,
D) = 3 (=17 () 0 gyt )
=0

They can also be computed as given in [3], eq. (4.11), p. 862.

d " n—1 k
Dpm(2) = (-2 ) (" (1 =2)). (2)
z
This can be rewritten, using the Fuler derivative E, := z d% as
1 mo(.n k
Dipn(z) = - (2" (1 2)F). Q

This shows immediately eq. (1) using the binomial sum for (1 — 2)¥ and the eigen-equation E™z7 = j™ 2J.
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Here we consider the special N—family of polynomials { PSy(n, )} with integer N, namely

n

PSy(n,x) = Z(—l)"ik <Z> (k+ N + 1)"z* = (;# Dy Nyin(2). (4)
k=0

From eq. (3) this can be written as

PSx(n, 1) = —yzr ER@ (@ — 1)), 5)

A simple computation shows that the instance N = 0 can also be obtained by

1 l;n+1(x __1)n+1. (6)

PSy(n, z) = m .

The number triangles TSy of the coefficients of PSy are
TSn(n, k) = (=1)"* <Z> (k+ N+ 1", for n >0, andk =0,1,..,n. (7)

For n < k one sets T'Sy(n, k) = 0
The e.g.fs of the columns of these triangles, i.e., Enx(k, z) := Y >2, T'Sy(n, k) 2" (one can start with

n = 0), are
Proposition 1:

N +1)z)*

Proof:

En(k, z) = (=1)* g(k, —2) (N1 S with g(k, z) == Y0, (1) 2"/n! = e” a2 /KL

This follows from the fact that the e.g.f. of the kth column (with leading zeros) of the Pascal triangle,
OEIS [1] A007318, can be obtained from the ordinary generating function Gy(z) = z¥/(1 — z)* by
an inverse Laplace transformation, namely £I=U(Gy(1/p)/p) = £/ (p — 1)) = et tF /K. This
also shows that the Pascal triangle, the Riordan triangle of the Bell type (1/(1 — ), z/(1 — x))) is
also the Sheffer triangle (sometimes called exponential Riordan triangle) of the Appell type (exp(zx), x).
O

Proposition 2: The e.g.f. ETSy(z, z) of the row polynomials {PSx(n, x)}, i.e., the e.g.f. of triangle
TSN,B

ETSN(z, z) = ZPNTLQJ ZxEka

e~ (NHD) = Z (k+ N+ 1D)zze *)k/E!. (9)
k=0

Proof: This follows from Py (n, ) = Y.}_, TSn(n, k) z¥, an interchange of the summation variables n
and k, and the definition of Ex(k, x) with the result eq. (8) . O

Because the instance N = 0 will turn out to be special we treat this case first. See A075513, but there
the triangle has offset 1. (A-numbers will be given henceforth without the OEIS reference.)

Proposition 3:
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S d e~ (2 +W(—z ze7%)

— -z __ (_ — = 1
‘ =z ze * c dy( W( y)) y=x ze * 1+ W(—CE 2672) ’ ( 0)

o
ETSy(z, z) = e ZZk—i—l
k=0

where W (y) is the principal branch of the Lambert W-function, (see e.g., (8], [5]) defined by the identity

W (y) exp(W(y)) = y, with derivative LW (y) = exp(=W(y))/(1 + W (y)).
The proof uses the following e.g.f. of {k*~1}ra_1 = A000169.
Lemma 1:

§ : kflyk
— = k - . 11
) k=1 k! ( )

Proof:

The Lagrange inverse of g(z) = xe™® is gl (y) = 320, g, y"/n! with

gn = (d”fl/dtnfl)(l/emp(—t))”‘ = n"1  See A000169, and Stanley [4]. But this composi-
tional inverse of g(x) is —W(—y) l:)ecause, from the definition of W, W(—y)exp(W(—-y)) = —y, or

(=W(=y)) exp(=(=W(-y)) = v.
For a proof that —W (—y) is the compositional inverse of x exp(—z) one can alternatively use the rule for
the derivative of the compositional inverse —W (—y) of z e~* and compare this with the known derivative

of =W (—y) (see above). O
Proof of eq. (10):

The first step is eq. (9) for N = 0. From Lemma 1 follows the second step, after a change of the summa-
tion variable k — k+1, % (=W(=y) = 32 (k + 1)* %]T The third step uses the above given result
for d% W(y) for y — —y. O

The result of eq. (9) for non-vanishing integer N is, after evaluation of the sum:
Theorem:
For N € Z\ {0}:

= 1d (W)Y
ETSy(x, z) = e~ W+ = [dy < > ]

(N41)2 [e(NH) (—W(-v)) ]
= e

1= (=W(-y))

y=xze * y=xze *

(12)
For the proof we need the following Proposition for the exponential (sometimes called binomial) convo-
lution of W (—y)/(—y) = e (=¥ (this identity follows from the definition of W (x) with z — —y).
Proposition 4:

a) The e.g.f. of (k + 1)*1 =A000272 (k + 1), for k > 0, is W(—~y)/(—vy), i.e.,

k

) S "
k=0

-Wi(-y) _

e

b) The special Sheffer triangle (or infinite matrix with upper diagonal part vanishing) of the Jabotinsky
type (1, =W (—=z)) has row polynomials

JW(n, x) ZJn m)a™ with e.g.f. EJW (z, z) = e *W(2) (14)

m=0

c) The a-family of Abel polynomial systems A(a;n,z) := z(r — an)* !, forn > 0and a € Z, [[2],
[6], [9]] are Sheffer polynomials of the Jabotinsky type (1, fl-U(a; y)), with the compositional inverse
U (a; y) of f(a; ) = ze*®. Hence the JW (n, x) polynomial is identified as the member A(—1;n,z)
of this Abel family.
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d) The e.g.f. of (W(—y)/(=y))"N = exp(—N W(—y)) is defined by > 22 cn(n)y™/n!, and cy(n) is a
polynomial in N of degree n (with 00 := 1), but later used only for integer N # 0), i.e.,
en(n) = Z a(n, m) N™, forn > 0, (15)

m=0

where the number triangle {a(n, m)} is the Jabotinsky triangle {.J(n, m)}, given by the unsigned triangle
|A137452|. Hence
en(n) = JW(n, N). (16)

e) The triangle entries a(n, m) = J(n, m) are

n—1
m—1

a(0, 0) = 1; a(n, 0) = 0, and a(n, m) = ( >n"m, forn >landm=1,2,..,n. (17)
f) The explicit form of ¢(N, n) is

¢(N,0) =1, and ¢(N, n) = N (n+ N)""!, forn > 1. (18)
This shows that ¢(N, n) = A232006(n + N, N) for N > 1, and n > 0.

g) Faa di Bruno’s formula [7] for ¢y (n):
en(0) = 1, and for n > 1, with partitions of n of m parts, written as n = Z?le ej and m = 2?21 ej.
(ej is the non-negative exponent of part j, however, 7% means that part j is absent) one obtains:

_ 4 Neww)| o N T(7 N7 L
en(n) = dy”e ‘y:O = n! mzz:l N Z H 7 ol (19)

ey ez, ....en j=1

Proof

a) The first equation follows from the definition of W (z = —y). The second one follows from Lemma 1
after a shift in the summation index.

b) This is a known result for the e.g.f. of general Sheffer (g(x), f(x)) polynomials with ¢(0) = 1 and
f(0) = 0 (see, e.g.,the Sheffer part in the W. L. link ‘Sheffer a- and z-sequence’ in A006232, with details
and references). Here g(z) = 1 and f(x) = —W(—x).

c) That the Abel polynomials are Sheffer polynomials of the Jabotinsky type is proved in Roman [2] (in
a notation where f is the present f [_1]). Here we give a proof using the known recurrence relation for
Jabotinsky polynomials J, (also given in [2], Corollary 3.7.2., p. 50) namely

1
J(n,z) = x [W] J(n—1,z), forn > 1, and J(0, x) = 1. (20)
TETD ] |y
Hence
t
A(-Lin,z) =z [1 e_ J A(-1;n—1, x), forn > 1, and A(—1;0, z) = 1 (21)
t=d/dx
will be proved.
This uses the expansion (n® is a falling factorial)
¢ i a(n) tn ith a(n) Zn: nk = pl -~ 1 (22)
= —, W = £ =nl —
-t 4 n!’ prt — k! ’

The proof of the a(n) is done by expanding the Lh.s. and picking coefficients of t"/n!, for n > 0 (using
induction over n).
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The recurrence relation is a(n + 1) = (n+ 1)a(n) + 1, for n > 0, and a(0) = 1. For {a(n)},=o see
A000522.
In addition one needs higher derivatives of A(—1;n — 1, z).

Lemma 2

d k

(d_> A-lin—1,2) = (n—1)E@ + k) (z +n — )" * 2 fork > 0andn > 1. (23)

x
Proof of the Lemma
By induction over k for fixed n. The case k = 0 is satisfied because (n — 1)2 := 1. The induction step
for(dm)k‘HA( n—1,z)uses (n — DE(n — (k+1)) = (n — 1)E£L. O
Contlnulng with the proof of part c) we start with the binomial expansion A(-1;n,z) = z((z +n —

H+1t =2 P ( ) (r+n—1)7, and egs. (21) and (22). After division by z (z # 0) one wants
to prove, for fixed n > 1,

n—l !

ML

where the k-sum is cut off at the degree of A(—1;n—1,x). Applying Lemma 2 leads to the r.h.s. (RHS)

n—1
UE) (e 4 k) (4 n - 1) D) (25)

|
k=0

In order to compare powers of x + n — 1 on both sides of eq. (24) , one rewrites x + k = (z + n — 1)+
(k — (n — 1)) for each term, except for &k = n — 1. This last term needs no rewriting, it is a(n —1). The
first term, k = 0, leads to a rewritten first part a(0) (z + n — 1)"~!, and an addition to the rewritten
first part of term k + 1, i.e., a(0)(—(n — 1)) (x +n — 1)"~2. This k = 0 term is the only one consisting
of only one rewritten part.

For k = 0, 1, ..., n—2 the (z independent) second part of the replacement leads to (a(k)/k!) (n—1)% (k —
(n — 1)) (z + n — 1) *=2 which adds to the first part of the rewritten term for k + 1 that will produce
this power.

This means that each power (z + n — 1)"*72 for k € {1,2,..,n — 1} consist of two terms: the
first one from the first part of the rewritten k term and the second one from the second part of the
rewritten k& — 1 term. The single rewritten ¥ = 0 term is a(0) (z + n — 1)"~!, and it coincides with
the j = n — 1 term of the Lh.s. (LHS) of eq.(24) because a(0) = 1. The last term k& = n — 1
receives the additional second part of the k& = n — 2 term, i.e., a(n —2)(n —1)(—1). This results in
a(n—1) — (n — 1)a(n —2) = 1 (by the recurrence), coinciding with the j = 0 term of the LHS.
Thus the coefficient of (z + n — 1)"*=2 for k = {1, 2, ..., n — 1}, can be compared on both sides of
eq. (24),

n—1 (n— 1)L 1 a(k+1) i a(k)
= = — DM = — DE(n -1 - k). 26
(n—k—2> (k+ 1) R ARG ) (26)
This can be rewritten with the relation between (n—1)% and (n— 1)L used above in the proof of Lemma
2 as
RHS = u (n—k—1)(a(k+1) — (k+1)a(k)) (27)
 (k+ 1) ’

which equals the LH S because of the recurrence a(k+1) — (k+1)a(k) = 1, and again using the falling
factorial relation. This ends the proof of part c).

d) The proof that c¢y(n) = JW(n,x)|,=n is shown for the corresponding e.g.f.s. By definition the
e.g.f. of {en(n) bn>=o is exp(—N W (—y)). From b) the e.g.f. of the row polynomials {JW (n, )}, >0 is
EJW (z, y) = exp(—z W (—y) (expansion in y). For z = N the claim follows.
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e) This follows from JW (n, x) = A(—1;x,n) from c), and the trivial computation of = (z + n)"~! by
the binomial expansion, and a shift of the summation index, The case of the ¥ coefficient is separated,
giving a(0, 0) = 1.

f) for N # 0andn > 1, N(n + N)* ' = n"(N/n) (1 4+ (N/n))*"! = n* 34 ("1 (N/n)m+t =
n" Yy (;L;ll) (N/n)™ =", (Z:ll)n"*m]\/m = Yy a(n, m) N™, with a(n, m) from part e),
hence this equals ¢(V,n), because the m = 0 term a(n, 0) = 0 forn > 1.

g) The Faa di Bruno formula is for jy—nnf(g(y)), and here f(x)=exp(Nx) and g(y) = —W(-y).

Because for cy(n) the formula is evaluated at y = 0, one needs ci‘i_mmf(x)‘z:g(o):o = N™ and

%g(y)‘yzo = 777! from eq.(11). The multinomials n!/ H?:1 j!% e;! appearing in this formula are
called M3 = Mj3(e(n, m)), with é(n, m) := {ey, ea, ...,e,}, and the given restrictions on the non-
negative exponents of é(n, m) These multinomials are shown in A036040 (see the Abramowitz-Stegun
link there).

This shows that a(n, m) in eq. (15) for cy(n) equals the sum of Ms-partition polynomials (ParPolM3)
over the p(n,m) =A008284(n, m) partitions of n with m parts: Zi(:nl’m) ParPolM3(n,m, k,{x; =
7 Y j=1.m)-

Example: n = 3, the partitions for m = 1, 2, 3 are 3,11 2!, 13, respectively.

en(3) =31 (N1 32/31+ N2 (19/11) (21 /2 + N3 (1°/11)3/3!) = 9N + 6 N? + N3. Compare this with row
n = 3of |A137452|: [0, 9, 6, 1]. 0

Proof of the Theorem

The step from the last equation of eq.(9) to the first equation of eq.(12), with y = zzexp(—z), is
proved with the help of Proposition 4, part d) and the explicit form of a(n, m) from part e).

The e.g.f. Y oo(k + N + 1)Fy* /Kl is proved to be (1/N)d/dy (1 + >3, en (k) y*/k!), where ey (0) = 1
was used. This means, after comparing powers of v,

1
(k+N+1)’féNcN(/g+1), for k > 0. (28)

Because a(k + 1, 0) = 0 the r.h.s. becomes, with eq. (15) and an index shift in m,

ZT’:’LZO a(k+1, m+1) N™. From eq. (17) this becomes ZT’:’LZO (:L) (k+1)k=™ N™ but this is the binomial
expansion of ((k + 1) + N)*,

For the proof of the second equation of the Theorem, eq. (12), one uses the replacement (W (—y)/(—y))
by exp(N (=W (—x))), and with d/dy (=W (—-y)) = exp(—=W(-y))/(1 — (=W (—y)), one obtains

N

~W(~ N+1) (-W(~
1d Newey) _ New(y) e VY e (29)
N dy L= (=W(-y) 1= (W)
O
We close with the result that for each integer N the row sum of the triangle T'Sy is n!.
Proposition 5
Z Tn(n, k) = PSn(n, 1) = nl, for N € Z. (30)
k=0

Proof
We show that the e.g.f. of {PS(n,1)}n>—0, i.e., ETSN(1, z) from eq. (10) and eq. (12) becomes 1/(1 — z),

the e.g.f. of {n!},>o.
For N = 0 one obtains for eq. (10) from —W(—=y)|,—cap(—z) = 2 (compositional inverse relation, see
the proof of Lemma 1)

ETSo(1, z) = e * = . (31)
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For integer N # 0 one uses in eq. (12) the previously mentioned compositionl inverse rule for —W (—y)
with y = zexp(—=z)

ETSN(1, z) = e-(NHDz N2 = . (32)

The dependence on N # 0 dropped out. m|
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