%I #8 Jan 01 2018 04:23:43
%S 1,56,1848,47040,1023792,20076672,365787136,6314147840,104637781248,
%T 1680323893248,26325099300864,404403166003200,6115019304300544,
%U 91287994741981184,1348582723009708032
%N Seventh column of triangle A075497.
%C The e.g.f. given below is Sum_{m=0..6} A075513(7,m)*exp(2*(m+1)*x)/6!.
%F a(n) = A075497(n+7, 7) = (2^n)*S2(n+7, 7) with S2(n, m) := A008277(n, m) (Stirling2).
%F a(n) = Sum_{m=0..6} A075513(7, m)*((m+1)*2)^n/6!.
%F G.f.: 1/Product_{k=1..7} (1 - 2*k*x).
%F E.g.f.: (d^7/dx^7)(((exp(2*x)-1)/2)^7)/7! = (exp(2*x) - 384*exp(4*x) + 10935*exp(6*x) - 81920*exp(8*x) + 234375*exp(10*x) - 279936*exp(12*x) + 117649*exp(14*x))/6!.
%Y Cf. A075511.
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Oct 02 2002