login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A075500 Stirling2 triangle with scaled diagonals (powers of 5). 10
1, 5, 1, 25, 15, 1, 125, 175, 30, 1, 625, 1875, 625, 50, 1, 3125, 19375, 11250, 1625, 75, 1, 15625, 196875, 188125, 43750, 3500, 105, 1, 78125, 1984375, 3018750, 1063125, 131250, 6650, 140, 1, 390625, 19921875 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.

The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(5*z) - 1)*x/5) - 1.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..1275

FORMULA

a(n, m) = (5^(n-m)) * stirling2(n, m).

a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*5)^(n-m))/(m-1)! for n >= m >= 1, else 0.

a(n, m) = 5m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.

G.f. for m-th column: (x^m)/Product_{k=1..m}(1-5k*x), m >= 1.

E.g.f. for m-th column: (((exp(5x)-1)/5)^m)/m!, m >= 1.

EXAMPLE

[1]; [5,1]; [25,15,1]; ...; p(3,x) = x(25 + 15*x + x^2).

From Andrew Howroyd, Mar 25 2017: (Start)

Triangle starts

*     1

*     5       1

*    25      15       1

*   125     175      30       1

*   625    1875     625      50      1

*  3125   19375   11250    1625     75    1

* 15625  196875  188125   43750   3500  105   1

* 78125 1984375 3018750 1063125 131250 6650 140 1

(End)

MAPLE

# The function BellMatrix is defined in A264428.

# Adds (1, 0, 0, 0, ..) as column 0.

BellMatrix(n -> 5^n, 9); # Peter Luschny, Jan 28 2016

MATHEMATICA

Flatten[Table[5^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)

BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];

rows = 10;

M = BellMatrix[5^#&, rows];

Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-Fran├žois Alcover, Jun 23 2018, after Peter Luschny *)

PROG

(PARI) for(n=1, 11, for(m=1, n, print1(5^(n - m) * stirling(n, m, 2), ", "); ); print(); ) \\ Indranil Ghosh, Mar 25 2017

CROSSREFS

Columns 1-7 are A000351, A016164, A075911-A075915. Row sums are A005011(n-1).

Cf. A075499, A075501.

Sequence in context: A193685 A174358 A264131 * A096645 A140713 A125906

Adjacent sequences:  A075497 A075498 A075499 * A075501 A075502 A075503

KEYWORD

nonn,easy,tabl

AUTHOR

Wolfdieter Lang, Oct 02 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 23:21 EST 2020. Contains 332113 sequences. (Running on oeis4.)