This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A075300 Array A read by antidiagonals upwards: A(n, k) = array A054582(n,k) - 1 = 2^n*(2*k+1) - 1 with n,k >= 0, 9
 0, 1, 2, 3, 5, 4, 7, 11, 9, 6, 15, 23, 19, 13, 8, 31, 47, 39, 27, 17, 10, 63, 95, 79, 55, 35, 21, 12, 127, 191, 159, 111, 71, 43, 25, 14, 255, 383, 319, 223, 143, 87, 51, 29, 16, 511, 767, 639, 447, 287, 175, 103, 59, 33, 18, 1023, 1535, 1279, 895, 575, 351, 207, 119 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS From Philippe Deléham, Feb 19 2014: (Start) A(0,k)  = 2*k = A005843(k), A(1,k)  = 4*k + 1 = A016813(k), A(2,k)  = 8*k + 3 = A017101(k), A(n,0)  = A000225(n), A(n,1)  = A153893(n), A(n,2)  = A153894(n), A(n,3)  = A086224(n), A(n,4)  = A052996(n+2), A(n,5)  = A086225(n), A(n,6)  = A198274(n), A(n,7)  = A238087(n), A(n,8)  = A198275(n), A(n,9)  = A198276(n), A(n,10) = A171389(n). (End) A permutation of the nonnegative integers. - Alzhekeyev Ascar M, Jun 05 2016 LINKS FORMULA From Wolfdieter Lang, Jan 31 2019: (Start) Array A(n, k) = 2^n*(2*k+1) - 1, for n >= 0 and m >= 0. The triangle is T(n, k) = A(n-k, k) = 2^(n-k)*(2*k+1) - 1, n >= 0, k=0..n. See also A054582 after subtracting 1. (End) EXAMPLE The array A begins:    0    2    4    6    8   10   12   14   16   18 ...    1    5    9   13   17   21   25   29   33   37 ...    3   11   19   27   35   43   51   59   67   75 ...    7   23   39   55   71   87  103  119  135  151 ...   15   47   79  111  143  175  207  239  271  303 ...   31   95  159  223  287  351  415  479  543  607 ...   ... - Philippe Deléham, Feb 19 2014 From Wolfdieter Lang, Jan 31 2019: (Start) The triangle T begins:    n\k   0    1    2   3   4   5   6   7  8  9 10 ...    0:    0    1:    1    2    2:    3    5    4    3:    7   11    9   6    4:   15   23   19  13   8    5    31   47   39  27  17  10    6:   63   95   79  55  35  21  12    7:  127  191  159 111  71  43  25  14    8:  255  383  319 223 143  87  51  29 16    9:  511  767  639 447 287 175 103  59 33 18   10: 1023 1535 1279 895 575 351 207 119 67 37 20   ... T(3, 1) = 2^2*(2*1+1) - 1 = 12 - 1 = 11.  (End) MAPLE A075300bi := (x, y) -> (2^x * (2*y + 1))-1; A075300 := n -> A075300bi(A025581(n), A002262(n)); A002262 := n -> n - binomial(floor((1/2)+sqrt(2*(1+n))), 2); A025581 := n -> binomial(1+floor((1/2)+sqrt(2*(1+n))), 2) - (n+1); MATHEMATICA Table[(2^# (2 k + 1)) - 1 &[m - k], {m, 0, 10}, {k, 0, m}] (* Michael De Vlieger, Jun 05 2016 *) CROSSREFS Inverse permutation: A075301. Transpose: A075302. The X-projection is given by A007814(n+1) and the Y-projection A025480. Cf. A002262, A025581, A054582, A241957. Sequence in context: A291588 A064620 A064216 * A259153 A028691 A246353 Adjacent sequences:  A075297 A075298 A075299 * A075301 A075302 A075303 KEYWORD nonn,tabl,easy AUTHOR Antti Karttunen, Sep 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 04:25 EDT 2019. Contains 328315 sequences. (Running on oeis4.)