login
y-value of the solution (x,y,z) to 5/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z and having the largest z-value. The x and z components are in A075249 and A075251.
3

%I #4 Mar 30 2012 17:22:26

%S 2,5,3,4,5,9,19,7,9,13,20,43,13,17,23,37,77,21,27,37,58,121,31,40,55,

%T 85,175,43,56,75,116,239,57,73,99,153,313,73,93,127,194,397,91,116,

%U 157,241,491,111,141,191,292,595,133,169,229,349,709,157,95,269,410,833

%N y-value of the solution (x,y,z) to 5/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z and having the largest z-value. The x and z components are in A075249 and A075251.

%C See A075248 for more details.

%t For[xLst={}; yLst={}; zLst={}; n=3, n<=100, n++, cnt=0; xr=n/5; If[IntegerQ[xr], x=xr+1, x=Ceiling[xr]]; While[yr=1/(5/n-1/x); If[IntegerQ[yr], y=yr+1, y=Ceiling[yr]]; cnt==0&&y>x, While[zr=1/(5/n-1/x-1/y); cnt==0&&zr>y, If[IntegerQ[zr], z=zr; cnt++; AppendTo[xLst, x]; AppendTo[yLst, y]; AppendTo[zLst, z]]; y++ ]; x++ ]]; yLst

%Y Cf. A075248, A075249, A075251.

%K hard,nice,nonn

%O 3,1

%A _T. D. Noe_, Sep 10 2002