This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A075226 Largest prime in the numerator of the 2^n sums generated from the set 1, 1/2, 1/3,..., 1/n. 6
 3, 11, 19, 137, 137, 1019, 2143, 7129, 7129, 78167, 81401, 1085933, 1111673, 1165727, 2364487, 41325407, 41325407, 796326437, 809074601, 812400209, 822981689, 19174119571, 19652175721, 99554817251, 100483070801 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS For the smallest odd prime not generated, see A075227. For information about how often the numerator of these sums is prime, see A075188 and A075189. The Mathematica program also prints the subset that yields the largest prime. For n <=20, the largest prime occurs in a sum of n-2, n-1, or n reciprocals. LINKS Martin Fuller, Table of n, a(n) for n = 2..100 Martin Fuller, PARI program EXAMPLE a(3) =11 because 11 is largest prime numerator in the three sums that yield primes: 1+1/2 = 3/2, 1/2+1/3 = 5/6 and 1+1/2+1/3 = 11/6. MATHEMATICA Needs["DiscreteMath`Combinatorica`"]; maxN=20; For[t={}; lst={}; mx=0; i=0; n=2, n<=maxN, n++, While[i<2^n-1, i++; s=NthSubset[i, Range[n]]; k=Numerator[Plus@@(1/s)]; If[PrimeQ[k], If[k>mx, t=s]; mx=Max[mx, k]]]; Print[n, " ", t]; AppendTo[lst, mx]]; lst Table[Max[Select[Numerator[Total/@Subsets[1/Range[n], {2, 2^n}]], PrimeQ]], {n, 2, 30}] (* The program will take a long time to run. *) (* Harvey P. Dale, Jan 08 2019 *) PROG (Haskell) import Data.Ratio (numerator) a075226 n = a075226_list !! (n-1) a075226_list = f 2 [recip 1] where    f x hs = (maximum \$ filter ((== 1) . a010051') (map numerator hs')) :             f (x + 1) hs' where hs' = hs ++ map (+ recip x) hs -- Reinhard Zumkeller, May 28 2013 (PARI) See Fuller link. CROSSREFS Cf. A001008, A075135, A075188, A075189, A075227, A010051, A217712. Sequence in context: A128996 A196174 A192591 * A192598 A028978 A082628 Adjacent sequences:  A075223 A075224 A075225 * A075227 A075228 A075229 KEYWORD nice,nonn AUTHOR T. D. Noe, Sep 08 2002 EXTENSIONS More terms from Martin Fuller, Jan 19 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 13 08:18 EST 2019. Contains 329093 sequences. (Running on oeis4.)