%I
%S 0,0,0,0,0,0,0,0,6,25,53,47,97,281,280,343,345,1367,619,2478,1504,
%T 8292,1811,16742,3458,48453,5459,95311,9416,333739
%N Number of anisohedral polyiamonds with n cells.
%C A tiling is isohedral if the symmetries of the tiling act transitively on the tiles; a shape is anisohedral if it tiles the plane, but not isohedrally.
%D Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Section 9.4.
%H Joseph Myers, <a href="http://www.polyomino.org.uk/mathematics/polyformtiling/">Polyiamond tiling</a>
%Y Cf. A071332, A075216, A075217, A075218, A075219, A075220, A075221, A075222, A075223, A075206, A075215.
%K hard,nonn
%O 1,9
%A _Joseph Myers_, Sep 08 2002
%E More terms from _Joseph Myers_, Nov 11 2003
%E a(29) and a(30) from _Joseph Myers_, Nov 21 2010
