%I
%S 0,0,0,0,0,1,4,36,73,258,501,999,1383,4835,4685,10576,8497,42156,
%T 12931,129325,84555
%N Number of anisohedral polyhexes with n cells.
%C A tiling is isohedral if the symmetries of the tiling act transitively on the tiles; a shape is anisohedral if it tiles the plane, but not isohedrally.
%D Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Section 9.4.
%H Joseph Myers, <a href="http://www.polyomino.org.uk/mathematics/polyformtiling/">Polyhex tiling</a>
%Y Cf. A070766, A075207, A075208, A075209, A075210, A075211, A075212, A075213, A075214, A075206, A075224.
%K hard,nonn
%O 1,7
%A _Joseph Myers_, Sep 08 2002
%E More terms from _Joseph Myers_, Nov 08 2003
%E More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 05 2007
