%I
%S 0,0,0,0,0,0,0,1,9,44,108,222,431,900,1157,2258,1381,7429,5542,18306,
%T 22067,47849,10542,202169,28977
%N Number of anisohedral polyominoes with n cells.
%C A tiling is isohedral if the symmetries of the tiling act transitively on the tiles; a shape is anisohedral if it tiles the plane, but not isohedrally.
%D Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Section 9.4.
%H Joseph Myers, <a href="http://www.polyomino.org.uk/mathematics/polyformtiling/">Polyomino tiling</a>
%Y Cf. A054359, A075198, A075199, A075200, A075201, A075202, A075203, A075204, A075205, A075215, A075224.
%K hard,nonn
%O 1,9
%A _Joseph Myers_, Sep 08 2002
%E More terms from _Joseph Myers_, Nov 04 2003
%E a(24) and a(25) from _Joseph Myers_, Nov 17 2010
