login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A075117 Table by antidiagonals of generalized Lucas numbers: T(n,k) = T(n,k-1) + n*T(n,k-2) with T(n,0)=2 and T(n,1)=1. 8
2, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 4, 5, 1, 2, 1, 7, 7, 7, 1, 2, 1, 11, 17, 10, 9, 1, 2, 1, 18, 31, 31, 13, 11, 1, 2, 1, 29, 65, 61, 49, 16, 13, 1, 2, 1, 47, 127, 154, 101, 71, 19, 15, 1, 2, 1, 76, 257, 337, 297, 151, 97, 22, 17, 1, 2, 1, 123, 511, 799, 701, 506, 211, 127, 25, 19, 1, 2 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

G. C. Greubel, Antidiagonals n = 0..100, flattened

FORMULA

T(n, k) = ((1+sqrt(4*n+1))/2)^k + ((1-sqrt(4*n+1))/2)^k = 2*A060959(n, k+1) - A060959(n, k).

T(n, k) = 2^(1-k)*Sum_{j=0..floor(k/2)} binomial(k, 2*j)*(1+4*n)^j. - G. C. Greubel, Jan 27 2020

EXAMPLE

Array starts as:

  2, 1,  1,  1,  1,   1, ...;

  2, 1,  3,  4,  7,  11, ...;

  2, 1,  5,  7, 17,  31, ...;

  2, 1,  7, 10, 31,  61, ...;

  2, 1,  9, 13, 49, 101, ...;

  2, 1, 11, 16, 71, 151, ...; etc.

MAPLE

seq(seq( 2^(1+k-n)*add( binomial(n-k, 2*j)*(1+4*k)^j, j=0..floor((n-k)/2)), k=0..n), n=0..13); # G. C. Greubel, Jan 27 2020

MATHEMATICA

T[n_, k_]:= ((1 + Sqrt[1+4n])/2)^k + ((1 - Sqrt[1+4n])/2)^k; Table[If[n==0 && k==0, 2, T[k, n-k]]//Simplify, {n, 0, 13}, {k, 0, n}]//Flatten (* G. C. Greubel, Jan 27 2020 *)

PROG

(MAGMA) [2^(1+k-n)*(&+[Binomial(n-k, 2*j)*(1+4*k)^j: j in [0..Floor((n-k)/2)]]): k in [0..n], n in [0..13]]; // G. C. Greubel, Jan 27 2020

(Sage)

def T(n, k): return 2^(1-k)*sum( binomial(k, 2*j)*(1+4*n)^j for j in (0..floor(k/2)) )

[[T(k, n-k) for k in (0..n)] for n in (0..13)] # G. C. Greubel, Jan 27 2020

CROSSREFS

Cf. A060959.

Rows include: A054977, A000032, A014551, A075118, A072265.

Columns include: A007395, A000012, A005408, A016777, A056220, A062786.

Sequence in context: A029439 A225743 A218828 * A279387 A309852 A029810

Adjacent sequences:  A075114 A075115 A075116 * A075118 A075119 A075120

KEYWORD

nonn,tabl

AUTHOR

Henry Bottomley, Sep 02 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 08:18 EDT 2020. Contains 334825 sequences. (Running on oeis4.)