login
A075115
Binomial transform of A073145: a(n)=Sum(binomial(n,k)*A073145(k),(k=0,..,n)).
5
3, 2, 0, 2, 8, 12, 12, 16, 32, 56, 80, 112, 176, 288, 448, 672, 1024, 1600, 2496, 3840, 5888, 9088, 14080, 21760, 33536, 51712, 79872, 123392, 190464, 293888, 453632, 700416, 1081344, 1669120, 2576384, 3977216, 6139904, 9478144, 14630912
OFFSET
0,1
COMMENTS
a(n) is nonnegative since the real root of x^3-2*x^2+2*x-2 is dominant. - Michael Somos, Feb 28 2007
FORMULA
a(n)=2a(n-1)-2a(n-2)+2a(n-3), a(0)=3, a(1)=2, a(2)=0.
G.f.: (3 - 4*x + 2*x^2)/(1 - 2*x + 2*x^2 - 2*x^3).
a(n) = 3*A077943(n) -4*A077943(n-1) +2*A077943(n-2). - R. J. Mathar, Mar 13 2021
MATHEMATICA
CoefficientList[Series[(3-4*x+2*x^2)/(1-2*x+2*x^2-2*x^3), {x, 0, 40}], x]
LinearRecurrence[{2, -2, 2}, {3, 2, 0}, 40] (* Harvey P. Dale, Jan 24 2019 *)
PROG
(PARI) {a(n)= if(n<0, 0, polsym( x^3 -2*x^2 +2*x -2, n) [n+1])} /* Michael Somos, Feb 28 2007 */
CROSSREFS
Sequence in context: A077814 A131728 A373088 * A273528 A085080 A376984
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Sep 02 2002
STATUS
approved