login
A075034
Numbers n such that tau(n) >= tau(n+1) >= tau(n+2) where tau(n) = number of divisors of n.
4
20, 21, 32, 33, 44, 45, 56, 57, 75, 80, 81, 84, 85, 92, 93, 104, 105, 116, 117, 132, 135, 140, 141, 144, 147, 165, 170, 171, 176, 177, 189, 200, 201, 204, 212, 213, 216, 217, 224, 225, 230, 231, 242, 243, 252, 260, 261, 272, 285, 296, 297, 300, 301, 315, 324
OFFSET
1,1
LINKS
MATHEMATICA
nn = 400; t = DivisorSigma[0, Range[nn]]; Select[Range[nn-2], t[[#]] >= t[[#+1]] >= t[[#+2]] &] (* Harvey P. Dale, May 24 2012 *)
PROG
(Python)
from sympy import divisor_count as tau
[n for n in range(1, 333) if tau(n) >= tau(n+1) >= tau(n+2)] # Karl V. Keller, Jr., Jul 10 2020
CROSSREFS
Sequence in context: A118865 A118608 A176241 * A363770 A022110 A041808
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Sep 02 2002
EXTENSIONS
More terms from Benoit Cloitre, Sep 07 2002
STATUS
approved