login
A075028
a(1) = 1, then a(n) = the smallest number k such that the number of divisors of the n numbers from k through k+n-1 are in strictly ascending order.
13
1, 1, 61, 61, 11371, 11371, 7392171, 168776043, 1584614377, 38045133481, 30386250649371, 1848289766450821
OFFSET
1,3
COMMENTS
tau(k) < tau(k+1) < ... < tau(k+n-1).
a(11) > 10^12. - Donovan Johnson, Oct 13 2009
a(11) > 10^13. - Giovanni Resta, Jul 25 2013
a(13) > 2.64*10^15. - Jud McCranie, Mar 27 2019
EXAMPLE
a(3) = 61 = a(4) as tau(61) = 2 < tau(62) = 4 < tau(63) = 6 < tau(64) = 7.
CROSSREFS
Sequence in context: A204748 A276471 A122568 * A258158 A364715 A042859
KEYWORD
nonn,more
AUTHOR
Amarnath Murthy, Sep 02 2002
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003
a(7)-a(10) from Donovan Johnson, Oct 13 2009
a(11)-a(12) from Jud McCranie, Mar 27 2019
STATUS
approved