This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A075024 a(n) = the largest prime divisor of the number A173426(n) = concatenate(1,2,...,n-1,n,n-1,...,2,1) . 7
 1, 11, 37, 101, 271, 37, 4649, 137, 333667, 12345678910987654321, 17636684157301569664903, 2799473675762179389994681, 2354041513534224607850261, 2068140300159522133, 498056174529497, 112240064764214229701, 4188353169004802474320231191377 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also for 1 < n < 10, a(n) is the common prime divisor for all A010785(m) which consist of n digits. - _Alexander R Povolotsky_, Jun 05 2014, corrected by M. F. Hasler, Jul 30 2015 According to the definition (and given terms), this the greatest prime factor (A006530) of A173426 and not of A002477, as an earlier formula asserted and which may have been an assumption of the preceding comment. - M. F. Hasler, Jul 29 2015 LINKS M. F. Hasler, Table of n, a(n) for n = 1..36 FORMULA a(n) = A006530(A173426(n)). - Michel Marcus, Jun 05 2014, corrected by M. F. Hasler, Jul 29 2015 EXAMPLE a(5) = 271 as 123454321 = 41*41*271*271. a(25) = 12471243489559387823527232424981012432152516319410549 is the larger factor of the semiprime A173426(24) = A075023(25) * a(n). MATHEMATICA Table[FactorInteger[FromDigits[Join[Flatten[IntegerDigits/@Range[ n]], Flatten[ IntegerDigits/@Range[n-1, 1, -1]]]]][[-1, 1]], {n, 20}] (* Harvey P. Dale, May 20 2016 *) PROG (PARI) a(n) = {if (n == 1, return (1)); s = ""; for (i=1, n, s = concat(s, Str(i)); ); forstep (i=n-1, 1, -1, s = concat(s, Str(i)); ); f = factor(eval(s)); f[#f~, 1]; } \\ Michel Marcus, Jun 05 2014 (PARI) A075024(n)=A006530(A173426(n)) \\ A006530 should provide efficient code and also covers the case n=1. - M. F. Hasler, Jul 29 2015 CROSSREFS Cf. A075019, A075020, A075021, A075022, A075023. Sequence in context: A140373 A316191 A003020 * A229612 A297797 A210321 Adjacent sequences:  A075021 A075022 A075023 * A075025 A075026 A075027 KEYWORD base,nonn AUTHOR Amarnath Murthy, Sep 01 2002 EXTENSIONS More terms from Sascha Kurz, Jan 03 2003 a(16)-a(17) from Michel Marcus, Jun 05 2014 More terms from M. F. Hasler, Jul 29 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 22:23 EDT 2019. Contains 328373 sequences. (Running on oeis4.)