

A075001


Smallest k such that the concatenation of n consecutive numbers starting with k (from k to n+k1) is a multiple of n; or 0 if no such number exists.


5



1, 1, 1, 3, 1, 1, 3, 5, 1, 1, 9, 1, 4, 7, 1, 5, 23, 1, 14, 1, 9, 9, 13, 5, 1, 21, 1, 13, 12, 1, 36, 21, 9, 3, 41, 1, 34, 33, 9, 21, 12, 9, 33, 9, 1, 13, 28, 5, 48, 1, 23, 21, 3, 1, 11, 13, 14, 41, 28, 1, 114, 115, 9, 41, 21, 9, 23, 69, 1, 61, 73, 5, 14, 43, 1, 145, 13, 9, 127, 41, 9, 95
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Conjecture: For every n there exists a k.
First occurrence of k where a(n)=k: 1, 103, 4, 13, 8, 105, 14, 87, 11, 699, 55, 29, 23, 19, 114, 261, 102, 97, 178, 219, 26, 121, 17, 151, 92, ..., .  Robert G. Wilson v
a(n)=1 for n = 1, 2, 3, 5, 6, 9, 10, 12, 15, 18, 20, 25, 27, 30, 36, 45, 50, 54, 60, 69, 75, 90, 100, ..., .  Robert G. Wilson v
Increasing a(n)'s: 1, 3, 5, 9, 23, 36, 41, 48, 114, 115, 145, 166, 175, 221, 251, ..., at n = 1, 4, 8, 11, 17, 31, 35, 49, 61, 62, 76, 85, 122, 133, 170, 179, 217, 229, ..., .  Robert G. Wilson v


LINKS

Robert G. Wilson v, Table of n, a(n) for n = 1..2500


EXAMPLE

a(11) = 9 as 910111213141516171819 the concatenation of 11 numbers from 9 to 19 is divisible by 11 (11*82737383012865106529).


MATHEMATICA

f[n_] := Block[{c = 1, id = Range@n}, While[k = FromDigits@Flatten@IntegerDigits@id/n; ! IntegerQ@k, id++; c++ ]; c]; Array[f, 82] (* Robert G. Wilson v, Oct 20 2007 *)


PROG

(PARI) /* The following program assumes the conjecture is true. */ /* It has found nonzero a(n) for n up to 500. */ {for(n=1, 500, k=0; until(s%n==0, k++; s=0; for(m=k, k+n1, s=s*(10^length(Str(m)))+m)); print1(k, ", "))}


CROSSREFS

Cf. A074991, A074992, A074993, A074994, A074995, A074996, A036377, A073086, A074999, A075000, A077306, A075000.
Sequence in context: A110291 A152027 A077308 * A252840 A093803 A285175
Adjacent sequences: A074998 A074999 A075000 * A075002 A075003 A075004


KEYWORD

nonn,base


AUTHOR

Amarnath Murthy, Aug 31 2002


EXTENSIONS

More terms from Rick L. Shepherd, Sep 03 2002


STATUS

approved



