login
Continued fraction for sqrt((Pi^2 + e^2)/2).
1

%I #36 Aug 08 2024 14:00:28

%S 2,1,15,54,15,1,2,2,1,2,19,3,2,1,1,19,1,3,2,4,1,5,1,1,1,1,5,8,2,1,1,2,

%T 3,1,1,2,3,1,2,9,2,3,18,5,63,2,1,1,4,13,3,10,1,5,1,20,1,6,1,38,2,1,4,

%U 57,1,8,12,9,2,1,2,1,1,4,10,1,1,1,15,2,4,1,1,1,1,9,2,2,3,54,1,39,1,1,5

%N Continued fraction for sqrt((Pi^2 + e^2)/2).

%C Curiously enough sqrt((Pi^2 + e^2)/2) = 2.937572169 is roughly the distance (in AU) from the Sun of the asteroid 407 Arachne. - _Zak Seidov_, Oct 03 2013

%H Vincenzo Librandi, <a href="/A074952/b074952.txt">Table of n, a(n) for n = 0..999</a>

%t ContinuedFraction[Sqrt[(E^2 + Pi^2)/2], 70] (* _Zak Seidov_, Oct 03 2013 *)

%o (PARI) contfrac(sqrt((Pi^2+exp(1)^2)/2)) \\ _Michel Marcus_, Oct 03 2013

%Y Cf. A074948 (decimal expansion).

%K nonn,cofr

%O 0,1

%A _Zak Seidov_, Oct 05 2002

%E Corrected and edited by _Zak Seidov_, Oct 03 2013

%E Offset changed by _Andrew Howroyd_, Aug 07 2024