%I #36 Aug 08 2024 14:00:28
%S 2,1,15,54,15,1,2,2,1,2,19,3,2,1,1,19,1,3,2,4,1,5,1,1,1,1,5,8,2,1,1,2,
%T 3,1,1,2,3,1,2,9,2,3,18,5,63,2,1,1,4,13,3,10,1,5,1,20,1,6,1,38,2,1,4,
%U 57,1,8,12,9,2,1,2,1,1,4,10,1,1,1,15,2,4,1,1,1,1,9,2,2,3,54,1,39,1,1,5
%N Continued fraction for sqrt((Pi^2 + e^2)/2).
%C Curiously enough sqrt((Pi^2 + e^2)/2) = 2.937572169 is roughly the distance (in AU) from the Sun of the asteroid 407 Arachne. - _Zak Seidov_, Oct 03 2013
%H Vincenzo Librandi, <a href="/A074952/b074952.txt">Table of n, a(n) for n = 0..999</a>
%t ContinuedFraction[Sqrt[(E^2 + Pi^2)/2], 70] (* _Zak Seidov_, Oct 03 2013 *)
%o (PARI) contfrac(sqrt((Pi^2+exp(1)^2)/2)) \\ _Michel Marcus_, Oct 03 2013
%Y Cf. A074948 (decimal expansion).
%K nonn,cofr
%O 0,1
%A _Zak Seidov_, Oct 05 2002
%E Corrected and edited by _Zak Seidov_, Oct 03 2013
%E Offset changed by _Andrew Howroyd_, Aug 07 2024