login
A074927
a(n) such that p(n)*p(n+1)+a(n) is a minimal square.
5
3, 1, 1, 4, 1, 4, 1, 4, 9, 1, 9, 4, 1, 4, 9, 9, 1, 9, 4, 1, 9, 4, 9, 16, 4, 1, 4, 1, 4, 49, 4, 9, 1, 25, 1, 9, 9, 4, 9, 9, 1, 25, 1, 4, 1, 36, 36, 4, 1, 4, 9, 1, 25, 9, 9, 9, 1, 9, 4, 1, 25, 49, 4, 1, 4, 49, 9, 25, 1, 4, 9, 16, 9, 9, 4, 9, 16, 4, 16, 25, 1, 25, 1, 9, 4, 9, 16, 4, 1, 4, 36, 16, 4
OFFSET
1,1
COMMENTS
When a(n)=1, p(n) and p(n+1) are twin primes.
a(n+1) = A072681(A024675(n)). - Reinhard Zumkeller, Mar 04 2009
LINKS
FORMULA
For n>1: a(n) = ((p(n+1)-p(n))/2)^2. - Reinhard Zumkeller, Oct 22 2002
EXAMPLE
a(154) = 100 because p(154)*p(155) + 100 = 804609 = 897^2.
MATHEMATICA
Flatten[{3, Table[((Prime[n+1]-Prime[n])/2)^2, {n, 2, 100}]}] (* Vaclav Kotesovec, Mar 23 2014 *)
Join[{3}, ((#[[2]]-#[[1]])/2)^2&/@Partition[Prime[Range[2, 100]], 2, 1]] (* Harvey P. Dale, Dec 04 2016 *)
CROSSREFS
Sequence in context: A138684 A132442 A364082 * A139605 A191780 A098712
KEYWORD
nonn
AUTHOR
Zak Seidov, Oct 02 2002
STATUS
approved