This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074872 Inverse BinomialMean transform of the Fibonacci sequence A000045 (with the initial 0 omitted). 11
 1, 1, 5, 5, 25, 25, 125, 125, 625, 625, 3125, 3125, 15625, 15625, 78125, 78125, 390625, 390625, 1953125, 1953125, 9765625, 9765625, 48828125, 48828125, 244140625, 244140625, 1220703125, 1220703125, 6103515625, 6103515625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS See A075271 for the definition of the BinomialMean transform. The inverse binomial transform of 2^n*c(n+1), where c(n) is the solution to c(n)=c(n-1)+kc(n-2), a(0)=0,a(1)=1 is 1,1,4k+1,4k+1,(4k+1)^2,... - Paul Barry, Feb 12 2004 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..2000 Index entries for linear recurrences with constant coefficients, signature (0,5). FORMULA a(n) = 5^floor((n-1)/2). a(1)=1, a(2)=1 and, for n>2, a(n)=5*a(n-2). G.f.: x*(1+x)/(1-5x^2); a(n)=(1/(2sqrt(5))((1+sqrt(5))(sqrt(5))^n-(1-sqrt(5))(-sqrt(5))^n)). Inverse binomial transform of A063727 (2^n*Fib(n+1)). - Paul Barry, Feb 12 2004 a(n) = (1/5)*5^[(1/2)*n]*5^[(1/4)*(-1)^n]*125^(1/4), with n>=0. - Paolo P. Lava, Oct 06 2008 a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011 MATHEMATICA a[1] := 1; a[2] := 1; a[n_] := 5a[n - 2]; Table[a[n], {n, 30}] (* Alonso del Arte, Mar 04 2011 *) PROG (MAGMA) [5^Floor((n-1)/2): n in [1..40]]; // Vincenzo Librandi, Aug 16 2011 (PARI) a(n)=5^((n-1)\2) \\ Charles R Greathouse IV, Oct 03 2016 CROSSREFS Cf. A056451, A016116, A108411. Sequence in context: A223186 A071340 A056451 * A162962 A170834 A154630 Adjacent sequences:  A074869 A074870 A074871 * A074873 A074874 A074875 KEYWORD nonn,easy AUTHOR John W. Layman, Sep 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 07:53 EDT 2019. Contains 324347 sequences. (Running on oeis4.)