This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074859 Number of elements of S_n having the maximum possible order g(n), where g(n) is Landau's function (A000793). 10
 1, 1, 1, 2, 6, 20, 240, 420, 2688, 18144, 120960, 2661120, 7983360, 103783680, 1037836800, 12454041600, 149448499200, 1693749657600, 60974987673600, 289631191449600, 5792623828992000, 121645100408832000, 3568256278659072000, 30776210403434496000, 738629049682427904000, 12310484161373798400000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 REFERENCES J.-L. Nicolas, On Landau's function g(n), pp. 228-240 of R. L. Graham et al., eds., Mathematics of Paul Erdős I. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..175 J. Kuzmanovich and A. Pavlichenkov, Finite groups of matrices whose entries are integers, Amer. Math. Monthly, 109 (2002), 173-186. W. Miller, The Maximum Order of an Element of Finite Symmetric Group, Am. Math. Monthly, Jun-Jul 1987, pp. 497-506. J.-L. Nicolas, Sur l'ordre maximum d'un élément dans le groupe S_n des permutations, Acta Arith., 14 (1968), 315-332. J.-L. Nicolas, Ordre maximal d'un élément du groupe S_n de permutations et 'highly composite numbers', Bull. Math. Soc. France 97 (1969) 129-191. FORMULA a(n) = n!*coefficient of x^n in expansion of Sum_{i divides A000793(n)} mu(A000793(n)/i)*exp(Sum_{j divides i} x^j/j). - Vladeta Jovovic, Sep 29 2002 MATHEMATICA g[n_] := Max[ Apply[ LCM, IntegerPartitions[n], 1]]; f[x_, n_] := Total[ (MoebiusMu[g[n]/#]*Exp[ Total[ (x^#/# & ) /@ Divisors[#]]] & ) /@ Divisors[g[n]]]; a[n_] := n!*Coefficient[ Series[f[x, n], {x, 0, n}], x^n]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Nov 03 2011, after Vladeta Jovovic *) CROSSREFS Cf. A000793 (Landau's function g(n)). Cf. A074064, A074103, A074115, A162682. Last row element of A057731. - Alois P. Heinz, Feb 14 2013 Sequence in context: A296519 A082690 A104861 * A162682 A103160 A242819 Adjacent sequences:  A074856 A074857 A074858 * A074860 A074861 A074862 KEYWORD easy,nice,nonn AUTHOR Christopher J. Smyth, Sep 11 2002 EXTENSIONS Corrected and extended by Vladeta Jovovic, Sep 20 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 06:35 EDT 2019. Contains 322329 sequences. (Running on oeis4.)