%I #31 Jan 17 2017 14:24:51
%S 4,6,8,10,12,16,18,20,22,24,28,30,32,36,40,42,45,46,48,50,52,54,56,58,
%T 60,64,66,68,70,72,76,78,80,81,82,84,88,90,92,96,100,102,105,106,108,
%U 110,112,114,117,120,124,126,128,130,132,136,138,140,144,148,150,152
%N Numbers n such that tau(n) > tau(n+1) where tau(x) = A000005(x).
%C The sequence of n such that tau(n)<tau(n+1) seems also asymptotic to d*n. - _Benoit Cloitre_, Sep 07 2002
%H Charles R Greathouse IV, <a href="/A074827/b074827.txt">Table of n, a(n) for n = 1..10000</a>
%H P. Erdős, <a href="http://www.renyi.hu/~p_erdos/1936-03.pdf">On a problem of Chowla and some related problems</a>, Proc. Cambridge Philos. Soc. 32 (1936), pp. 530-540.
%F a(n) seems to be asymptotic to d*n with d=2.2... - _Benoit Cloitre_, Sep 07 2002
%F In fact, Erdős proved that a(n) ~ 2n. - _Charles R Greathouse IV_, Dec 05 2012
%t Select[Range@ 152, DivisorSigma[0, #] > DivisorSigma[0, # + 1] &] (* _Michael De Vlieger_, Jul 03 2015 *)
%t Position[Partition[DivisorSigma[0,Range[200]],2,1],_?(#[[1]]>#[[2]]&),{1},Heads->False]//Flatten (* _Harvey P. Dale_, Jan 17 2017 *)
%o (PARI) is(n)=numdiv(n) > numdiv(n+1) \\ _Charles R Greathouse IV_, Dec 05 2012
%Y Cf. A074775 (tau(n)<tau(n+1)).
%K nonn
%O 1,1
%A _Donald S. McDonald_, Sep 04 2002
%E Corrected and extended by _Robert G. Wilson v_, Sep 06 2002