This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074825 Binomial transform of reflected pentanacci numbers A074062: a(n)=Sum(Binomial(n,k)*A074062(k),(k=0,..,n)). 1

%I

%S 5,4,2,-2,-10,-16,-4,46,142,250,262,4,-652,-1530,-1818,38,5662,14760,

%T 22028,15014,-22490,-95846,-172434,-154740,110500,733134,1556206,

%U 1875238,365334,-4306496,-11734244,-17112802,-9496002,25050298,90586134,157886356,142006676,-87803882

%N Binomial transform of reflected pentanacci numbers A074062: a(n)=Sum(Binomial(n,k)*A074062(k),(k=0,..,n)).

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F a(n)=4a(n-1)-7a(n-2)+6a(n-3)-3a(n-4)+2a(n-5), a(0)=5, a(1)=4, a(2)=2, a(3)=-2, a(4)=-10. G.f.: (5-16x+21x^2-12x^3+3x^4)/(1-4x+7x^2-6x^3+3x^4-2x^5).

%t CoefficientList[Series[(5-16x+21x^2-12x^3+3x^4)/(1-4x+7x^2-6x^3+3x^4-2x^5), {x, 0, 40}], x]

%Y Cf. A074062.

%K easy,sign

%O 0,1

%A Mario Catalani (mario.catalani(AT)unito.it), Sep 09 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .