The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074720 Least k such that floor(3^n/2^k) is prime. 1
 2, 1, 4, 5, 6, 1, 11, 6, 7, 4, 5, 1, 9, 6, 8, 21, 8, 4, 25, 12, 20, 13, 30, 17, 6, 13, 10, 13, 19, 5, 12, 34, 33, 37, 16, 39, 35, 13, 38, 30, 28, 20, 53, 16, 60, 24, 40, 43, 34, 19, 23, 32, 63, 59, 19, 22, 27, 56, 86, 14, 29, 5, 53, 13, 15, 63, 19, 7, 88, 1, 87, 46, 22, 51, 25, 30 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS From Robert Israel, Jan 04 2017: (Start) a(n) <= A056576(n) - 1. a(n) = 1 for n in A028491. (End) LINKS Robert Israel, Table of n, a(n) for n = 2..2000 MAPLE f:= proc(n) local t, k;    t:= 3^n;    for k from 1 do t:= t/2; if isprime(floor(t)) then return k fi od: end proc: map(f, [\$2..100]); # Robert Israel, Jan 04 2017 MATHEMATICA lk[n_]:=Module[{k=1, n3=3^n}, While[!PrimeQ[Floor[n3/2^k]], k++]; k]; Array[lk, 80, 2] (* Harvey P. Dale, Feb 24 2013 *) PROG (PARI) a(n)=if(n<0, 0, k=1; while(isprime(floor(3^n/2^k)) == 0, k++); k) CROSSREFS Sequence in context: A075423 A144774 A326056 * A323456 A326058 A262586 Adjacent sequences:  A074717 A074718 A074719 * A074721 A074722 A074723 KEYWORD easy,nonn AUTHOR Benoit Cloitre, Sep 04 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 13:24 EDT 2020. Contains 337393 sequences. (Running on oeis4.)