login
8-digit distinct digit primes.
15

%I #15 Apr 22 2021 03:37:10

%S 10234589,10234759,10234897,10235647,10235749,10235867,10236547,

%T 10236857,10237849,10238467,10238597,10238647,10238759,10238957,

%U 10239487,10239587,10239847,10243567,10243657,10243759,10243769

%N 8-digit distinct digit primes.

%C There are exactly 90510 eight-digit primes with all distinct digits. The last few are: 98745623, 98746031, 98746231, 98746321, 98750143, 98750213, 98750261, 98751043, 98751203, 98751403, 98751643, 98752061, 98752301, 98752361, 98752403, 98752603, 98752613, 98753201, 98753401, 98754163, 98754301, 98756431, 98760241, 98760421, 98760523, 98761543, 98762051, 98762431, 98762501, 98764013, 98764021, 98764153, 98764321, 98765143, 98765201, 98765413, 98765431.

%H Daniel Starodubtsev, <a href="/A074665/b074665.txt">Table of n, a(n) for n = 1..90510</a> (complete sequence)

%e 10247693 is a member because it is prime and has 8 digits all distinct.

%t Select[Range[10234589, 98765431, 2], Length[Union[IntegerDigits[ # ]]]==8 &&PrimeQ[ # ]&]

%o (PARI) is(n)=isprime(n) && #digits(n)==8 && #Set(digits(n))==8 \\ _Charles R Greathouse IV_, Feb 11 2017

%Y First differences are in A074666.

%K fini,full,nonn,base

%O 1,1

%A _Zak Seidov_, Aug 30 2002