login
A074636
Define b(k) by the recursion b(1)=n, b(k+1)=b(k)-floor(k/b(k)). Sequence gives the value a(n) such that b(a(n))=0; if k>a(n) then b(k) is undefined.
1
2, 5, 5, 100, 17, 12, 100, 204, 171, 34, 46, 19, 204, 176, 80, 80, 286, 28, 30, 286, 46, 100, 204, 80, 100, 80, 100, 49, 323, 171, 101, 286, 51, 2546, 171, 100, 171, 904, 176, 904, 108, 204, 130, 204, 323, 230, 74, 61305, 160, 286, 286, 132, 176, 83, 99, 96
OFFSET
0,1
COMMENTS
By definition a(n)>n. Conjecture: a(n) is always defined. Sometimes the b sequences for two values of n merge and a(n) is the same for both values. So some numbers, such as 100, 171 and 323, occur in the sequence more often than others.
MATHEMATICA
a[n_] := Module[{k, b}, For[k=0; b=n, b!=0, k++, b-=Floor[k/b]]; k]
CROSSREFS
Cf. A073339.
Sequence in context: A271222 A073339 A180092 * A368388 A127598 A196550
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Aug 25 2002
EXTENSIONS
Edited by Dean Hickerson, Aug 26 2002
STATUS
approved