login
a(n) = 5^n + 6^n + 9^n.
1

%I #17 Sep 08 2022 08:45:07

%S 3,20,142,1070,8482,69950,593722,5141030,45116962,399451310,

%T 3557016202,31792684790,284850459442,2556147225470,22961260134682,

%U 206391834657350,1855993886649922,16694871298564430,150200009950933162

%N a(n) = 5^n + 6^n + 9^n.

%H Vincenzo Librandi, <a href="/A074573/b074573.txt">Table of n, a(n) for n = 0..300</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (20,-129,270).

%F From _Mohammad K. Azarian_, Dec 30 2008: (Start)

%F G.f.: 1/(1-5*x) + 1/(1-6*x) + 1/(1-9*x).

%F E.g.f.: e^(5*x) + e^(6*x) + e^(9*x). (End)

%t Table[5^n + 6^n + 9^n, {n, 0, 20}]

%o (Magma) [5^n + 6^n + 9^n: n in [0..20]]; // _Vincenzo Librandi_, May 20 2011

%Y Cf. A001550, A001576, A034513, A001579, A074501-A074580.

%K easy,nonn

%O 0,1

%A _Robert G. Wilson v_, Aug 23 2002