This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074539 a(n) = 2^n + 5^n + 8^n. 1
 3, 15, 93, 645, 4737, 35925, 277833, 2175405, 17168097, 136171365, 1083508473, 8638764765, 68963621457, 550976525205, 4404150043113, 35214889699725, 281627564666817, 2252562753269445, 18018213207009753, 144134261562708285 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES D. Suprijanto, I. W. Suwarno, Observation on Sums of Powers of Integers Divisible by 3k-1, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2211 - 2217; http://dx.doi.org/10.12988/ams.2014.4139. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (15,-66,80). FORMULA From Mohammad K. Azarian, Dec 27 2008: (Start) G.f.: 1/(1-2*x) + 1/(1-5*x) + 1/(1-8*x). E.g.f.: exp(2*x) + exp(5*x) + exp(8*x). (End) MATHEMATICA Table[2^n + 5^n + 8^n, {n, 0, 20}] PROG (MAGMA) [2^n + 5^n + 8^n: n in [0..25]]; // Vincenzo Librandi, Jun 11 2011 CROSSREFS Cf. A001550, A001576, A034513, A001579, A074501 - A074580. Sequence in context: A002893 A256335 A258313 * A103210 A203014 A060066 Adjacent sequences:  A074536 A074537 A074538 * A074540 A074541 A074542 KEYWORD easy,nonn AUTHOR Robert G. Wilson v, Aug 23 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 04:31 EST 2019. Contains 329850 sequences. (Running on oeis4.)