login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = 1^n + 3^n + 7^n.
0

%I #19 Jan 15 2018 02:45:18

%S 3,11,59,371,2483,17051,118379,825731,5771363,40373291,282534299,

%T 1977503891,13841818643,96890604731,678227855819,4747575858851,

%U 33232973616323,232630643127371,1628413985330939,11398896347634611

%N a(n) = 1^n + 3^n + 7^n.

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (11,-31,21).

%F From _Mohammad K. Azarian_, Dec 26 2008: (Start)

%F G.f.: 1/(1-x) + 1/(1-3*x) + 1/(1-7*x).

%F E.g.f.: e^x + e^(3*x) + e^(7*x). (End)

%F a(n) = 10*a(n-1) - 21*a(n-2) + 12 with a(0)=3, a(1)=11. - _Vincenzo Librandi_, Jul 21 2010

%t Table[1^n + 3^n + 7^n, {n, 0, 20}]

%t LinearRecurrence[{11,-31,21},{3,11,59},31] (* _Harvey P. Dale_, Apr 23 2011 *)

%Y Cf. A001550, A001576, A034513, A001579, A074501..A074580.

%K easy,nonn

%O 0,1

%A _Robert G. Wilson v_, Aug 23 2002