login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = 1^n + 3^n + 4^n.
4

%I #20 Jan 05 2022 05:23:46

%S 3,8,26,92,338,1268,4826,18572,72098,281828,1107626,4371452,17308658,

%T 68703188,273218426,1088090732,4338014018,17309009348,69106897226,

%U 276040168412,1102998412178,4408506864308,17623567104026

%N a(n) = 1^n + 3^n + 4^n.

%H Bruno Berselli, <a href="/A074506/b074506.txt">Table of n, a(n) for n = 0..1000</a>.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (8,-19,12).

%F a(n) = 7*a(n-1) - 12*a(n-2) + 6 with a(0)=3, a(1)=8. - _Vincenzo Librandi_, Jul 19 2010

%F a(n) = 8*a(n-1) - 19*a(n-2) + 12*a(n-3). - _R. J. Mathar_, Jul 18 2010

%F From _Mohammad K. Azarian_, Dec 26 2008: (Start)

%F G.f.: 1/(1-x) + 1/(1-3*x) + 1/(1-4*x).

%F E.g.f.: e^x + e^(3*x) + e^(4*x). (End)

%t Table[1^n + 3^n + 4^n, {n, 0, 22}]

%Y Cf. A001550, A001576, A034513, A001579, A074501..A074580.

%Y Equals A074605(n) + 1.

%K easy,nonn

%O 0,1

%A _Robert G. Wilson v_, Aug 23 2002