This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074479 Largest prime factor of 5^n - 1. 6

%I

%S 2,3,31,13,71,31,19531,313,829,521,12207031,601,305175781,19531,1741,

%T 11489,466344409,5167,3981071,9161,519499,12207031,332207361361,

%U 390001,9384251,305175781,31051,234750601,22125996444329,7621

%N Largest prime factor of 5^n - 1.

%H Vincenzo Librandi, <a href="/A074479/b074479.txt">Table of n, a(n) for n = 1..100</a>

%H S. S. Wagstaff, Jr., <a href="http://www.cerias.purdue.edu/homes/ssw/cun/index.html">The Cunningham Project</a>

%F a(n) = A006530(A024049(n)). - _Vincenzo Librandi_, Jul 13 2016

%e 5^9 - 1 = 1953124 = (2^2)*19*31*829, so a(9) = 829.

%t Table[FactorInteger[5^n - 1] [[-1, 1]], {n, 30}] (* _Vincenzo Librandi_, Aug 23 2013 *)

%o (PARI) for(n=1,32, v=factor(5^n-1); print1(v[matsize(v)[1],1],","))

%o (MAGMA) [Maximum(PrimeDivisors(5^n-1)): n in [1..45]]; // _Vincenzo Librandi_, Jul 13 2016

%Y Cf. A074478 (largest prime factor of 5^n + 1), A074477 (largest prime factor of 3^n - 1), A074249 (largest prime factor of 7^n - 1).

%Y Cf. A006530, A024049.

%Y Cf. similar sequences listed in A274906.

%K nonn

%O 1,1

%A _Rick L. Shepherd_, Aug 23 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 23:03 EST 2016. Contains 278900 sequences.