login
A074468
Least number m such that the Sigma-Harmonic sequence Sum_{k=1..m} 1/sigma(k) >= n.
2
1, 7, 29, 129, 571, 2525, 11167, 49372, 218295, 965177, 4267457, 18868240, 83424514, 368855252, 1630865929, 7210751807, 31881800153
OFFSET
1,2
REFERENCES
Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 129, p. 44, Ellipses, Paris, 2008.
FORMULA
Limit_{n->oo} a(n+1)/a(n) = exp(1/c) = 4.42142525588146107878... where c = A308039. - Amiram Eldar, May 05 2024
MATHEMATICA
{s=0, s1=0}; Do[s=s+(1/DivisorSigma[1, n]); If[Greater[Floor[s], s1], s1=Floor[s]; Print[{n, Floor[s]}]], {n, 1, 1000000}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Labos Elemer, Aug 29 2002
EXTENSIONS
2 more terms from Lekraj Beedassy, Jul 14 2008
a(11)-a(15) from Donovan Johnson, Aug 22 2011
a(16)-a(17) from Amiram Eldar, May 05 2024
STATUS
approved