login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A074378 Even triangular numbers halved. 30
0, 3, 5, 14, 18, 33, 39, 60, 68, 95, 105, 138, 150, 189, 203, 248, 264, 315, 333, 390, 410, 473, 495, 564, 588, 663, 689, 770, 798, 885, 915, 1008, 1040, 1139, 1173, 1278, 1314, 1425, 1463, 1580, 1620, 1743, 1785, 1914, 1958, 2093, 2139, 2280, 2328, 2475 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Set of integers k such that k + (1 + 2 + 3 + 4 + ... + x) = 3*k, where x is sufficiently large. For example, 203 is a term because 203 + (1 + 2 + 3 + 4 + ... +28) = 609 and 609 = 3*203. - Gil Broussard, Sep 01 2008

Set of all m such that 16*m+1 is a perfect square. - Gary Detlefs, Feb 21 2010

Integers of the form Sum_{k=0..n} k/2. - Arkadiusz Wesolowski, Feb 07 2012

Numbers of the form h*(4*h + 1) for h = 0, -1, 1, -2, 2, -3, 3, ... - Bruno Berselli, Feb 26 2018

Numbers whose distance to nearest square equals their distance to nearest oblong; that is, numbers k such that A053188(k) = A053615(k). - Lamine Ngom, Oct 27 2020

LINKS

David A. Corneth, Table of n, a(n) for n = 0..9999

Neville Holmes, More Geometric Integer Sequences

Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).

FORMULA

Sum_{n>=0} q^a(n) = (Prod_{n>0} (1-q^n))*(Sum_{n>=0} A035294(n)*q^n).

a(n) = n*(n + 1)/4 where n*(n + 1)/2 is even.

G.f.: x*(3 + 2*x + 3*x^2)/((1 - x)*(1 - x^2)^2).

From Benoit Jubin, Feb 05 2009: (Start)

a(n) = (2*n + 1)*floor((n + 1)/2).

a(2*k) = k*(4*k+1); a(2*k+1) = (k+1)*(4*k+3). (End)

a(2*n) = A007742(n), a(2*n-1) = A033991(n). - Arkadiusz Wesolowski, Jul 20 2012

a(n) = (4*n + 1 - (-1)^n)*(4*n + 3 - (-1)^n)/4^2. - Peter Bala, Jan 21 2019

a(n) = (2*n+1)*(n+1)*(1+(-1)^(n+1))/4 + (2*n+1)*(n)*(1+(-1)^n)/4. - Eric Simon Jacob, Jan 16 2020

From Amiram Eldar, Jul 03 2020: (Start)

Sum_{n>=1} 1/a(n) = 4 - Pi (A153799).

Sum_{n>=1} (-1)^(n+1)/a(n) = 6*log(2) - 4 (See A016687). (End)

MAPLE

a:=n->(2*n+1)*floor((n+1)/2): seq(a(n), n=0..50); # Muniru A Asiru, Feb 01 2019

MATHEMATICA

1/2 * Select[PolygonalNumber@ Range[0, 100], EvenQ] (* Michael De Vlieger, Jun 01 2017, Version 10.4 *)

PROG

(PARI) a(n)=(2*n+1)*(n-n\2)

(MAGMA) f:=func<i | i*(4*i+1)>; [0] cat [f(n*m): m in [-1, 1], n in [1..25]]; // Bruno Berselli, Nov 13 2012

CROSSREFS

Cf. A011848, A014493, A074377, A035294.

Cf. A010709, A047522. [Vincenzo Librandi, Feb 14 2009]

Cf. A266883 (numbers n such that 16*n-15 is a square).

Cf. A016687, A153799.

Cf. A053615, A053188.

Sequence in context: A289622 A331996 A179213 * A185301 A179304 A026645

Adjacent sequences:  A074375 A074376 A074377 * A074379 A074380 A074381

KEYWORD

nonn,easy

AUTHOR

W. Neville Holmes, Sep 04 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 7 16:52 EST 2021. Contains 341897 sequences. (Running on oeis4.)