This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074324 a(2n+1) = 3^n, a(2n) = 4*3^(n-1) except for a(0) = 1. 5
 1, 1, 4, 3, 12, 9, 36, 27, 108, 81, 324, 243, 972, 729, 2916, 2187, 8748, 6561, 26244, 19683, 78732, 59049, 236196, 177147, 708588, 531441, 2125764, 1594323, 6377292, 4782969, 19131876, 14348907, 57395628, 43046721, 172186884, 129140163 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also: Coefficient of the highest power of q in the expansion of nu(0)=1, nu(1)=b and for n>=2, nu(n)=b*nu(n-1)+lambda*(n-1)_q*nu(n-2) with (b,lambda)=(1,3), where (n)_q=(1+q+...+q^(n-1)) and q is a root of unity. Instead of listing the coefficients of the highest power of q in each nu(n), if we list the coefficients of the smallest power of q (i.e., constant terms), we get a weighted Fibonacci numbers described by f(0)=1, f(1)=1, for n>=2, f(n)=f(n-1)+3f(n-2). Sequences A162766, A166552 are essentially the same. - M. F. Hasler, Dec 03 2014 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002. Index entries for linear recurrences with constant coefficients, signature (0,3). FORMULA For given b and lambda, the recurrence relation is given by; t(0)=1, t(1)=b, t(2)=b^2+lambda and for n>=3, t(n) = lambda*t(n-2). G.f.: -(1+x+x^2)/(-1+3*x^2). - R. J. Mathar, Dec 05 2007 a(n) = 3*a(n-2) for n>2. - Ralf Stephan, Jul 19 2013 a(n) = (1/6)*(7+(-1)^n)*3^floor(n/2) for n>0. - Ralf Stephan, Jul 19 2013 EXAMPLE nu(0)=1; nu(1)=1; nu(2)=4; nu(3)=7+3q; nu(4)=19+15q+12q^2; nu(5)=40+45q+42q^2+30q^3+9q^4; nu(6)=97+147q+180q^2+168q^3+147q^4+81q^5+36q^6; by listing the coefficients of the highest power in each nu(n), we get, 1,1,4,3,12,9,36,.... MATHEMATICA CoefficientList[Series[-(1 + x + x^2) / (-1 + 3 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 20 2013 *) LinearRecurrence[{0, 3}, {1, 1, 4}, 40] (* Harvey P. Dale, Mar 13 2016 *) PROG (MAGMA) [1] cat [(1/6)*(7+(-1)^n)*3^Floor(n/2):n in [1..40]]; // Vincenzo Librandi, Jul 20 2013 (PARI) a(n)=3^(n\2)\(3/4)^!bittest(n, 0) \\ M. F. Hasler, Dec 03 2014 CROSSREFS Cf. A006130. Sequence in context: A055527 A055523 A168430 * A162766 A166552 A122804 Adjacent sequences:  A074321 A074322 A074323 * A074325 A074326 A074327 KEYWORD nonn,easy AUTHOR Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002 EXTENSIONS More terms from R. J. Mathar, Dec 05 2007 Simpler definition from M. F. Hasler, Dec 03 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 24 22:49 EDT 2019. Contains 326314 sequences. (Running on oeis4.)