

A074234


Number of nodes of integer unit lattice covered by integer right triangles.


0



12, 36, 43, 72, 79, 106, 120, 146, 180, 213, 245, 250, 252, 278, 309, 336, 376, 380, 432, 532, 540, 559, 597, 607, 660, 694, 786, 792, 815, 822, 910, 918, 920, 936, 1001, 1036, 1069, 1092, 1158, 1260, 1321, 1412, 1419, 1432, 1440, 1478, 1561, 1595, 1632
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Let the coordinates of the vertices of the integer right triangle with legs 3,4 be (0,0), (3,0) and (0,4). Then the number of points with integer coordinates, including those on the sides, is 12. This is the maximal number of nodes covered by the triangle 3,4,5. Increasing all three lengths m times leads to a number of covered nodes equal to 6m(m+1).


LINKS

Table of n, a(n) for n=1..49.


EXAMPLE

a(1) = 12 because integer right triangle with legs 3,4 can cover a maximum of 12 nodes of the integer unit lattice. a(3) = 43 because integer right triangle with legs 5,12 can cover a maximum of 43 nodes of the integer unit lattice.


CROSSREFS

Sequence in context: A205967 A203378 A073543 * A076515 A039317 A298942
Adjacent sequences: A074231 A074232 A074233 * A074235 A074236 A074237


KEYWORD

nonn


AUTHOR

Zak Seidov, Sep 18 2002


STATUS

approved



