login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A074231 Numbers n such that Kronecker(8,n)==mu(gcd(8,n)). 1
1, 4, 7, 8, 9, 12, 15, 16, 17, 20, 23, 24, 25, 28, 31, 32, 33, 36, 39, 40, 41, 44, 47, 48, 49, 52, 55, 56, 57, 60, 63, 64, 65, 68, 71, 72, 73, 76, 79, 80, 81, 84, 87, 88, 89, 92, 95, 96, 97, 100, 103, 104, 105, 108, 111, 112, 113, 116, 119, 120, 121, 124, 127, 128, 129 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A Chebyshev transform of (1+2x)/(1-2x) (A046055) given by G(x)->(1/(1+x^2))G(x/(1+x^2)). - Paul Barry, Oct 27 2004

LINKS

Table of n, a(n) for n=1..65.

FORMULA

G.f.(1+x)^2/((1+x^2)(1-2x+x^2)); E.g.f. : exp(x)(2+2x)-cos(x); a(n)=2n+2-cos(pi*n/2); a(n)=sum{k=0..n, (0^k+4^k)cos(pi*(n-k)/2)}; a(n)=sum{k=0..floor(n/2), C(n-k, k)(-1)^k(2*2^(n-2k)-0^(n-2k)}; a(n)=2a(n-1)-2a(n-2)+2a(n-3)-a(n-4). - Paul Barry, Oct 27 2004

PROG

(PARI) for (x=1, 200, for (y=1, 200, if (kronecker(x, y)==moebius(gcd(x, y)), write("km.txt", x, "; ", y, " : ", kronecker(x, y)))))

(Sage) [lucas_number1(n+2, 0, 1)+2*n for n in xrange(1, 66)] [From Zerinvary Lajos, Mar 09 2009]

CROSSREFS

Cf. A047538.

Sequence in context: A161986 A020670 A047538 * A076680 A235623 A001074

Adjacent sequences:  A074228 A074229 A074230 * A074232 A074233 A074234

KEYWORD

nonn

AUTHOR

Jon Perry, Sep 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 20:40 EST 2014. Contains 252239 sequences.