login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A074231 Numbers n such that Kronecker(8,n)==mu(gcd(8,n)). 1
1, 4, 7, 8, 9, 12, 15, 16, 17, 20, 23, 24, 25, 28, 31, 32, 33, 36, 39, 40, 41, 44, 47, 48, 49, 52, 55, 56, 57, 60, 63, 64, 65, 68, 71, 72, 73, 76, 79, 80, 81, 84, 87, 88, 89, 92, 95, 96, 97, 100, 103, 104, 105, 108, 111, 112, 113, 116, 119, 120, 121, 124, 127, 128, 129 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A Chebyshev transform of (1+2x)/(1-2x) (A046055) given by G(x)->(1/(1+x^2))G(x/(1+x^2)). - Paul Barry, Oct 27 2004

LINKS

Table of n, a(n) for n=1..65.

FORMULA

G.f.(1+x)^2/((1+x^2)(1-2x+x^2)); E.g.f. : exp(x)(2+2x)-cos(x); a(n)=2n+2-cos(pi*n/2); a(n)=sum{k=0..n, (0^k+4^k)cos(pi*(n-k)/2)}; a(n)=sum{k=0..floor(n/2), C(n-k, k)(-1)^k(2*2^(n-2k)-0^(n-2k)}; a(n)=2a(n-1)-2a(n-2)+2a(n-3)-a(n-4). - Paul Barry, Oct 27 2004

PROG

(PARI) for (x=1, 200, for (y=1, 200, if (kronecker(x, y)==moebius(gcd(x, y)), write("km.txt", x, "; ", y, " : ", kronecker(x, y)))))

(Sage) [lucas_number1(n+2, 0, 1)+2*n for n in xrange(1, 66)] [From Zerinvary Lajos, Mar 09 2009]

CROSSREFS

Essentially the same as A047538.

Sequence in context: A253472 A255060 A047538 * A076680 A235623 A001074

Adjacent sequences:  A074228 A074229 A074230 * A074232 A074233 A074234

KEYWORD

nonn

AUTHOR

Jon Perry, Sep 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 19:19 EST 2016. Contains 278770 sequences.