|
|
A074226
|
|
Numbers n such that Kronecker(3,n) = 1.
|
|
1
|
|
|
1, 4, 10, 11, 13, 14, 16, 23, 25, 34, 35, 37, 38, 40, 44, 47, 49, 52, 56, 58, 59, 61, 62, 64, 71, 73, 82, 83, 85, 86, 92, 95, 97, 100, 106, 107, 109, 110, 119, 121, 130, 131, 133, 134, 136, 140, 143, 145, 148, 152, 154, 155, 157, 158, 160, 167, 169, 176, 178, 179
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Numbers n such that Kronecker(3, n) = mu(gcd(n, 3)).
|
|
LINKS
|
Indranil Ghosh, Table of n, a(n) for n = 0..1665
|
|
FORMULA
|
a(n) seems to be asymptotic to c*n with c=3. - Benoit Cloitre, Sep 18 2002
|
|
MATHEMATICA
|
Select[Range@ 180, KroneckerSymbol[3, #]== 1 &] (* Indranil Ghosh, Mar 16 2017 *)
|
|
PROG
|
(PARI) for (x=1, 200, for (y=1, 200, if (kronecker(x, y)==moebius(gcd(x, y)), write("km.txt", x, "; ", y, " : ", kronecker(x, y)))))
(PARI) is(n)=kronecker(3, n)>0 \\ Charles R Greathouse IV, Apr 06 2012
|
|
CROSSREFS
|
Cf. A074227, A047209, A074229.
Sequence in context: A244216 A240580 A102535 * A106631 A120261 A310338
Adjacent sequences: A074223 A074224 A074225 * A074227 A074228 A074229
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jon Perry, Sep 17 2002
|
|
EXTENSIONS
|
Definition simplified by Charles R Greathouse IV, Apr 06 2012
|
|
STATUS
|
approved
|
|
|
|