login
Integers m such that F(m) and F(2m) have the same largest prime factor where F(k) denotes the k-th Fibonacci number.
1

%I #15 Feb 18 2021 10:30:00

%S 3,15,21,23,25,29,33,35,39,43,45,51,55,59,63,65,75,82,83,85,87,93,99,

%T 105,107,109,111,115,119,123,125,127,131,132,133,135,137,139,142,143,

%U 145,147,151,153,158,161,166,171,173,175,179,181,183,185,187,189,191

%N Integers m such that F(m) and F(2m) have the same largest prime factor where F(k) denotes the k-th Fibonacci number.

%C Why are even values rare? (First one is 82.)

%H Michel Marcus, <a href="/A074214/b074214.txt">Table of n, a(n) for n = 1..225</a>

%e F(15) = 610 = 2*5*61 and F(30) = 832040 = 2^3*5*11*31*61 hence 15 is in the sequence.

%t Select[Range[3,200],FactorInteger[Fibonacci[#]][[-1,1]]==FactorInteger[ Fibonacci[2#]][[-1,1]]&] (* _Harvey P. Dale_, Sep 04 2018 *)

%o (PARI) f(n) = vecmax(factor(fibonacci(n))[,1]); \\ A060385

%o isok(m) = (m>2) && (f(m) == f(2*m)); \\ _Michel Marcus_, Feb 18 2021

%Y Cf. A000045, A060385.

%K nonn

%O 1,1

%A _Benoit Cloitre_, Sep 17 2002

%E More terms from _Don Reble_, Sep 20 2002