This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A074171 a(1) = 1. For n >= 2, a(n) is either a(n-1)+n or a(n-1)-n; we only use the minus sign if a(n-1) is prime. E.g. since a(2)=3 is prime, a(3)=a(2)-3=0. 2
 1, 3, 0, 4, 9, 15, 22, 30, 39, 49, 60, 72, 85, 99, 114, 130, 147, 165, 184, 204, 225, 247, 270, 294, 319, 345, 372, 400, 429, 459, 490, 522, 555, 589, 624, 660, 697, 735, 774, 814, 855, 897, 940, 984, 1029, 1075, 1122, 1170, 1219, 1269, 1320, 1372, 1425, 1479 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS In spite of the definition, this is simply 1, 3, then numbers of the form n*(n+7)/2 (A055999). In other words, a(n) = (n-3)(n+4)/2 for n >= 3. The proof is by induction: For n>3, a(n-1) = (n-4)(n+3)/2 is composite, so a(n) = a(n-1) + n = (n-3)(n+4)/2. - Dean Hickerson, T. D. Noe, Paul C. Leopardi, Labos E. and others, Oct 04 2004 If a 2-set Y and a 3-set Z, having one element in common, are subsets of an n-set X then a(n) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 03 2007 LINKS Milan Janjic, Two Enumerative Functions FORMULA a = 1, a = 3; a[n+1] = a[n]+n if a[n] is not a prime; a[n+1] = a[n]-n if a[n] is prime. EXAMPLE a(1) = 1 a(2) = a(1) + 2 = 3, which is prime, so a(3) = a(2) - 3 = 0, which is not prime, so a(4) = a(3) + 4 = 4, which is not prime, etc. MATHEMATICA {ta={1, 3}, tb={{0}}}; Do[s=Last[ta]; If[PrimeQ[s], ta=Append[ta, s-n]]; If[ !PrimeQ[s], ta=Append[ta, s+n]]; Print[{a=Last[ta], b=(n-3)*(n+4)/2, a-b}]; tb=Append[tb, a-b], {n, 3, 100000}]; {ta, {tb, Union[tb]}} (Labos) CROSSREFS Cf. A074170, A055999. Sequence in context: A309764 A079406 A068627 * A180657 A094665 A309053 Adjacent sequences:  A074168 A074169 A074170 * A074172 A074173 A074174 KEYWORD easy,nonn AUTHOR Amarnath Murthy, Aug 30 2002 EXTENSIONS More terms from Jason Earls, Sep 01 2002 More terms from Labos Elemer, Oct 07 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 00:03 EDT 2019. Contains 328025 sequences. (Running on oeis4.)