login
This site is supported by donations to The OEIS Foundation.

 

Logo

110 people attended OEIS-50 (videos, suggestions); annual fundraising drive to start soon (donate); editors, please edit! (stack is over 300), your editing is more valuable than any donation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A074085 Coefficient of q^2 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(2,1). 2
0, 0, 0, 0, 5, 24, 91, 308, 978, 2978, 8802, 25440, 72251, 202316, 559941, 1534548, 4170256, 11250630, 30158900, 80389600, 213204513, 562896832, 1480086111, 3877337556, 10123000126, 26347306474, 68378847990, 176994780672 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The coefficient of q^0 is the Pell number A000129(n+1).

REFERENCES

Paper in progress by Y. Kelly Itakura, to appear.

LINKS

Table of n, a(n) for n=0..27.

M. Beattie, S. D\u{a}sc\u{a}lescu and S. Raianu, Lifting of Nichols Algebras of Type $B_2$

FORMULA

G.f.: (5x^4-6x^5-8x^6-2x^7)/(1-2x-x^2)^3.

a(n)=6a(n-1)-9a(n-2)-4a(n-3)+9a(n-4)+6a(n-5)+a(n-6) for n>=8.

EXAMPLE

The first 6 nu polynomials are nu(0)=1, nu(1)=2, nu(2)=5, nu(3)=12+2q, nu(4)=29+9q+5q^2, nu(5)=70+32q+24q^2+14q^3+2q^4, so the coefficients of q^2 are 0,0,0,0,5,24.

MATHEMATICA

b=2; lambda=1; expon=2; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]

CROSSREFS

Coefficients of q^0, q^1 and q^3 are in A000129, A074084 and A074086. Related sequences with other values of b and lambda are in A074082-A074083 and A074087-A074089.

Sequence in context: A220316 A220339 A158499 * A145914 A066316 A180354

Adjacent sequences:  A074082 A074083 A074084 * A074086 A074087 A074088

KEYWORD

nonn

AUTHOR

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002

EXTENSIONS

Edited by Dean Hickerson, Aug 21 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 1 10:04 EDT 2014. Contains 248888 sequences.