login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A074051 a(n) = amount of Sum_{i=1..m} (i+1)! in Sum_{i=1..m} i^n*(i+1)!. 8
1, -1, 0, 3, -7, 0, 59, -217, 146, 2593, -15551, 32802, 160709, -1856621, 7971872, 1299951, -287113779, 2262481448, -7275903849, -36989148757, 698330745002, -4867040141851, 10231044332629, 184216198044034, -2679722886596295, 17971204188130391, -17976259717948832 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

If a(n)=0 then Sum_{i=1..infty}i^n(i+1)! = b(n) in the p-adic numbers. The only known numbers n with a(n)=0 are 2 and 5.

a(n)*(-1)^n gives the alternating row sums of the Sheffer triangle A143494 (2-restricted Stirling2). - From Wolfdieter Lang, Oct 06 2011

LINKS

Table of n, a(n) for n=0..26.

FORMULA

For each n there uniquely determined numbers a(n) and b(n) and a polynomial p_n such that for all integers m: Sum_{i=1..m}i^n(i+1)! = a(n)*Sum_{i=1..m}(i+1)! + p_n(m)(m+2)! + b(n) The sequence b(n) is A074052.

Second inverse binomial transform of A000587. E.g.f.: exp(1-2*x-exp(-x)). G.f.: Sum((x/(1+2*x))^k/Product(1+l*x/(1+2*x), l = 0 .. k), k = 0 .. infinity)/(1+2*x). a(n) = Sum_{k=0..n} (-1)^(n-k)*(k^2-3*k+1)*Stirling2(n, k). - Vladeta Jovovic, Jan 27 2005

a(n) = (-1)^n*(A000587(n+2)-A000587(n+1)). - Peter Luschny, Apr 17 2011

G.f.: 1/U(0)  where U(k)= x*k + 1 + x + x^2*(k+1)/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Sep 28 2012

G.f.: -1/U(0)  where U(k)= -x*k - 1 - x + x^2*(k+1)/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Sep 29 2012

G.f.: 1/(U(0) - x) where U(k)= 1 + x + x*(k+1)/(1 - x/U(k+1)) ; (continued fraction, 2-step). - Sergei N. Gladkovskii, Oct 12 2012

G.f.: 1/(U(0) + x) where U(k)= 1 + x*(2*k+1) - x*(k+1)/(1 + x/U(k+1)) ; (continued fraction, 2-step). - Sergei N. Gladkovskii, Oct 13 2012

G.f.: 1/G(0) where G(k)= 1 + 2*x/(1 + 1/(1 + 2*x*(k+1)/G(k+1)));(continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 21 2012

G.f.: 1 - 2*x/(G(0) + 2*x) where G(k)= 1 + 1/(1 + 2*x*(k+1)/(1 + 2*x/G(k+1)));(continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 25 2012

G.f.: (G(0) - 1)/(x-1) where G(k) =  1 - 1/(1+k*x+2*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 17 2013

G.f.: (G(0)-2-2*x)/x^2 where G(k) = 1 + 1/(1+k*x)/(1-x/(x+1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 09 2013

G.f.: (S-2-2*x)/x^2 where S = sum(k>=0, (2 + x*k)*x^k/prod(i=0..k, (1+x*i)) ). - Sergei N. Gladkovskii, Feb 09 2013

G.f.: (G(0)-2)/x where G(k) = 1 + 1/(1+k*x+x)/(1-x/(x+1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 09 2013

G.f.: (1+x)/x/Q(0) - 1/x, where Q(k)=  1 + x - x/(1 + x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013

EXAMPLE

a(2)=0 because Sum_{i=1..m}i^2(i+1)! = (m-1)(m+2)!+2. a(3)=3 because Sum_{i=1..m}i^3(i+1)! = 3*Sum_{i=1..m}(i+1)!+(m^2-m-1)(m+2)!+2.

MAPLE

alias(S2 = combinat[stirling2]);

A074051 := proc(n) local k;

1 + add((-1)^(n+k) * (S2(n+1, k+1) - S2(n+2, k+1)), k = 0..n) end:

seq(A074051(i), i = 0..26); # - Peter Luschny, Apr 17 2011

MATHEMATICA

A[a_] := Module[{p, k}, p[n_] = 0; For[k = a - 1, k >= 0, k--, p[n_] = Expand[p[n] + n^k Coefficient[n^a - (n + 2)p[n] + p[n - 1], n^(k + 1)]] ]; Expand[n^a - (n + 2)p[n] + p[n - 1]] ]

CROSSREFS

Cf. A074052, A143494.

Sequence in context: A199068 A198490 A247956 * A048292 A072450 A085785

Adjacent sequences:  A074048 A074049 A074050 * A074052 A074053 A074054

KEYWORD

easy,sign

AUTHOR

Jan Fricke (fricke(AT)uni-greifswald.de), Aug 14 2002

EXTENSIONS

More terms from Vladeta Jovovic, Jan 27 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 02:24 EST 2014. Contains 250286 sequences.