login
A073947
Number of strings over Z_3 of length n with trace 0 and subtrace 0.
5
1, 1, 3, 9, 21, 63, 225, 729, 2187, 6561, 19845, 59535, 177633, 531441, 1594323, 4782969, 14344533, 43033599, 129127041, 387420489, 1162261467, 3486784401, 10460471301, 31381413903, 94143533121, 282429536481, 847288609443, 2541865828329, 7625594296341
OFFSET
1,3
COMMENTS
Same as number of strings over GF(3) of length n with trace 0 and subtrace 0.
FORMULA
a(n; t, s) = a(n-1; t, s) + a(n-1; t+2, s+2t+1) + a(n-1; t+1, s+t+1) where t is the trace and s is the subtrace.
G.f.: q*(21*q^4-21*q^3+12*q^2-5*q+1)/[(1-3q)(1+3q^2)(1-3q+3q^2)]. - Lawrence Sze, Oct 24 2004
EXAMPLE
a(3;0,0)=3 since the three ternary strings of trace 0, subtrace 0 and length 3 are { 000, 111, 222 }.
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Frank Ruskey and Nate Kube, Aug 15 2002
EXTENSIONS
Terms a(21) onward from Max Alekseyev, Apr 09 2013
STATUS
approved