

A073910


Smallest number m such that m and the product of digits of m are both divisible by 3n, or 0 if no such number exists.


4



3, 6, 9, 168, 135, 36, 273, 168, 999, 0, 0, 1296, 0, 378, 495, 384, 0, 1296, 0, 0, 1197, 0, 0, 1368, 3525, 0, 2997, 672, 0, 0, 0, 384, 0, 0, 735, 1296, 0, 0, 0, 0, 0, 3276, 0, 0, 3915, 0, 0, 3168, 7497, 0, 0, 0, 0, 5994, 0, 7896, 0, 0, 0, 0, 0, 0, 7938, 2688, 0, 0, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Here 0 is regarded as not divisible by any number.
a[n]=0 if 10 divides 3n or n contains a prime divisor >9.  Sascha Kurz, Aug 23 2002


LINKS

Table of n, a(n) for n=1..71.


MAPLE

f := 3:for i from 1 to 1000 do b := ifactors(f*i)[2]: if b[nops(b)][1]>9 or (f*i mod 10) =0 then a[i] := 0:else j := 0:while true do j := j+f*i:c := convert(j, base, 10):d := product(c[k], k=1..nops(c)): if (d mod f*i)=0 and d>0 then a[i] := j:break:fi:od:fi:od:seq(a[k], k=1..1000);


CROSSREFS

Cf. A073906, A073907, A073908, A073909, A073911, A073912.
Sequence in context: A133195 A196156 A103978 * A115251 A057241 A104617
Adjacent sequences: A073907 A073908 A073909 * A073911 A073912 A073913


KEYWORD

nonn,base


AUTHOR

Amarnath Murthy, Aug 18 2002


EXTENSIONS

More terms from Sascha Kurz, Aug 23 2002


STATUS

approved



