|
|
A073888
|
|
a(1) = 1, a(2) = 2; a(n+1) = a(n)^n/a(n-1).
|
|
3
|
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..6.
|
|
FORMULA
|
a(n) = 2^A058798(n).
|
|
MAPLE
|
A073888:= proc(n) option remember;
if n<3 then n;
else a(n-1)^(n-1)/a(n-2);
fi; end;
seq(A073888(n), n = 1..7); # G. C. Greubel, May 17 2020
|
|
MATHEMATICA
|
a[n_]:= a[n]= If[n<3, n, a[n-1]^(n-1)/a[n-2]]; Table[a[n], {n, 7}] (* G. C. Greubel, May 17 2020 *)
|
|
PROG
|
(Magma)
I:=[1, 2]; [n le 2 select I[n] else Self(n-1)^(n-1)/Self(n-2): n in [1..7]]; // G. C. Greubel, May 17 2020
(Sage)
def a(n):
if (n<3): return n
else: return a(n-1)^(n-1)/a(n-2)
[a(n) for n in (1..7)] # G. C. Greubel, May 17 2020
|
|
CROSSREFS
|
Cf. A058798, A073889.
Sequence in context: A122214 A122216 A100117 * A114642 A200980 A178811
Adjacent sequences: A073885 A073886 A073887 * A073889 A073890 A073891
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Amarnath Murthy, Aug 17 2002
|
|
STATUS
|
approved
|
|
|
|