The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A073833 Numerators of b(n) where b(1) = 1, b(i) = b(i-1) + 1/b(i-1). 7
 1, 2, 5, 29, 941, 969581, 1014556267661, 1099331737522548368039021, 1280590510388959061548230114212510564911731118541, 1726999038066943724857508638586386504281539279376091034086485112150121338989977841573308941492781 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) is also the numerator of the fractional chromatic number of the Mycielski graph M_n. - Eric W. Weisstein, Mar 05 2011 It appears that lim_{n->infinity} (1/n)*exp(2*(b(n)^2-2n)) = c1 = 0.57...... - Benoit Cloitre, Oct 16 2002 c1 = 0.574810274671785...; see A232975. - Jon E. Schoenfield, Nov 30 2013 b(n)^2 = t/2 + u + (u - 1/2)/t + (-u^2 + 2*u - 11/12)/t^2 + (4*u^3/3 - 5*u^2 + 17*u/3 - 65/36)/t^3 + ... where t = 4*n, u = (log n)/2 + c, and c = -0.2768576248625765389364372...; see A233770. - Jon E. Schoenfield, Dec 15 2013 a(n) is also the numerator of b(n) where b(0) = b(1) = 1 and b(n) = (b(n-1)^2 + b(n-2)^2) / b(n-2) for n > 1 where the denominator of b(n) is partial products of A073834. - Michael Somos, Aug 16 2014 a(n) is also the numerator of b(n) where b(1) = 1 and b(2) = 2 and b(n) = b(n-2) + b(n-1) - (b(n-2)^2/b(n-1)) for n > 2. This has a geometric interpretation: One can prove, given two half lines starting at the center of a series of concentric circles, and a set of triangles each defined by the intersections of the two half lines with any given circle and one of the intersections of the rays with the next circle, that if the circles have radii specified by b(n), the triangle areas are all equal. - Sjoerd C. de Vries, Aug 13 2015 REFERENCES H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 187. D. J. Newman, A Problem Seminar, Springer; see Problem #60. J. H. Silverman, The arithmetic of dynamical systems, Springer, 2007, see p. 113 Table 3.1. LINKS Sjoerd C. de Vries, Mathematica file illustrating geometric application of the sequence Clark Kimberling, Polynomials associated with reciprocation, JIS 12 (2009) 09.3.4. Eric Weisstein's World of Mathematics, Fractional Chromatic Number FORMULA a(n) = a(n-1)^2 + A073834(n-1)^2; A073834(n) = a(n-1) * A073834(n-1). - Franklin T. Adams-Watters, Aug 04 2008 0 = a(n)^2*(a(n+1) - a(n)^2) - (a(n+2) - a(n+1)^2) for all n > 0. - Michael Somos, Aug 16 2014 EXAMPLE 1, 2, 5/2, 29/10, 941/290, 969581/272890, 1014556267661/264588959090, 1099331737522548368039021/268440386798659418988490, ... MATHEMATICA f[n_]:=n+1/n; Prepend[Numerator[NestList[f, 2, 9]], 1] (* Vladimir Joseph Stephan Orlovsky, Nov 19 2010 *) Numerator[NestList[# + 1/# &, 1, 10]] (* Eric W. Weisstein, Mar 05 2001 *) a[ n_] := If[ n<1, 0, If[ n<3, n, With[{x = a[n-2]^2, y = a[n-1]}, y y + x y - x x]]]; (* Michael Somos, Aug 16 2014 *) Numerator@RecurrenceTable[{b[n] == b[-2 + n] - b[-2 + n]^2/b[-1 + n] + b[-1 + n], b[1] == 1,    b[2] == 2}, b, {n, 1, 10}] (* Sjoerd C. de Vries, Aug 13 2015 *) PROG (PARI) {a(n) = if( n<1, 0, if( n<3, n, my(x = a(n-2)^2, y = a(n-1)); y^2 + x*y -x^2))}; /* Michael Somos, Mar 05 2012 */ CROSSREFS See A073834 for denominators. See A232975 for c1; see A233770 for c. Sequence in context: A059784 A000283 A121910 * A229918 A179554 A086383 Adjacent sequences:  A073830 A073831 A073832 * A073834 A073835 A073836 KEYWORD frac,nonn AUTHOR Alex Fink (finks(AT)telus.net), Aug 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 06:27 EDT 2020. Contains 336290 sequences. (Running on oeis4.)