|
|
A073803
|
|
Number of divisors of n is smaller than that of sigma(n).
|
|
7
|
|
|
3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
Solutions to A000005(x) < A062068(x)=A000005(A000203(x)).
|
|
EXAMPLE
|
x=96: D[96]={1,2,3,4,6,8,12,16,24,32,48,96},12 divisors; D[sigma(96)]={1,2,3,4,6,7,9,12,14,18,21,28,36,42,63,84,126,252}, 18 divisors; 12<18, so 96 is here.
|
|
MAPLE
|
filter:= proc(n) uses numtheory; tau(n) < tau(sigma(n)) end proc:
select(filter, [$1..100]); # Robert Israel, Aug 03 2020
|
|
MATHEMATICA
|
Do[s=DivisorSigma[0, DivisorSigma[1, n]]; s0=DivisorSigma[0, n]; If[Greater[s0, s], Print[n]], {n, 1, 1000}]
Select[Range[100], DivisorSigma[0, #]<DivisorSigma[0, DivisorSigma[1, #]]&] (* Harvey P. Dale, Sep 22 2019 *)
|
|
CROSSREFS
|
Cf. A000005, A000203, A062068, A073802-A073804, A037197.
Sequence in context: A136806 A253550 A295307 * A336353 A182851 A281995
Adjacent sequences: A073800 A073801 A073802 * A073804 A073805 A073806
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Labos Elemer, Aug 13 2002
|
|
STATUS
|
approved
|
|
|
|