|
|
A073802
|
|
Number of common divisors of n and sigma(n).
|
|
16
|
|
|
1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 1, 6, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 1, 4, 1, 4, 1, 3, 2, 2, 1, 3, 1, 1, 2, 2, 1, 4, 1, 4, 1, 2, 1, 6, 1, 2, 1, 1, 1, 4, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 1, 4, 1, 2, 1, 2, 1, 6, 1, 2, 2, 3, 1, 6, 2, 3, 1, 2, 2, 6, 1, 1, 2, 1, 1, 4, 1, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,6
|
|
COMMENTS
|
From Jaroslav Krizek, Feb 18 2010: (Start)
Number of divisors d of number n such that d divides sigma(n).
a(n) = A000005(n) - A173438(n).
a(n) = A000005(n) for multiply-perfect numbers (A007691). (End)
|
|
LINKS
|
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
See program.
a(n) = A000005(A009194(n)) = tau(gcd(n,sigma(n))). [Reinhard Zumkeller, Mar 12 2010]
|
|
EXAMPLE
|
For n = 12: a(12) = 3; sigma(12) = 28, divisors of 12: 1, 2, 3, 4, 6, 12; d divides sigma(n) for 3 divisors d: 1, 2, 4.
n=96: D[96]={1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96}, D[sigma(96)]={1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252}, NCD[n, sigma(n)]={1, 2, 3, 4, 6, 12} so a(96)=6.
|
|
MATHEMATICA
|
g1[x_] := Divisors[x] g2[x_] := Divisors[DivisorSigma[1, x]] ncd[x_] := Length[Intersection[g1[x], g2[x]]] Table[ncd[w], {w, 1, 128}]
Table[Length[Intersection[Divisors[n], Divisors[DivisorSigma[1, n]]]], {n, 100}] (* Vincenzo Librandi, Oct 09 2017 *)
|
|
PROG
|
(PARI) a(n)=numdiv(gcd(sigma(n), n)) \\ Charles R Greathouse IV, Mar 09 2014
(Magma) [NumberOfDivisors(GCD(SumOfDivisors(n), n)): n in [1..100]]; // Vincenzo Librandi, Oct 09 2017
|
|
CROSSREFS
|
Cf. A000005, A000203, A062068, A073803, A073804.
Sequence in context: A269443 A039927 A336722 * A132157 A103163 A128211
Adjacent sequences: A073799 A073800 A073801 * A073803 A073804 A073805
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Labos Elemer, Aug 13 2002
|
|
STATUS
|
approved
|
|
|
|