

A073798


pi(n) is a power of 2, where pi(n) = A000720(n) is the number of primes <= n.


5



2, 3, 4, 7, 8, 9, 10, 19, 20, 21, 22, 53, 54, 55, 56, 57, 58, 131, 132, 133, 134, 135, 136, 311, 312, 719, 720, 721, 722, 723, 724, 725, 726, 1619, 1620, 3671, 3672, 8161, 8162, 8163, 8164, 8165, 8166, 17863, 17864, 17865, 17866, 17867, 17868, 17869, 17870
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The numbers occur in blocks of consecutive integers: 2, 34, 710, 1922, ...; the nth block starts at the 2^nth prime (A033844) and ends just before the (2^n + 1)th prime (A051439).


LINKS

Ivan Neretin, Table of n, a(n) for n = 1..665


EXAMPLE

10 is in the sequence since pi(10)=4=2^2.


MATHEMATICA

pow2[n_] := n==1(n>1&&IntegerQ[n/2]&&pow2[n/2]); Select[Range[20000], pow2[PrimePi[ # ]]&]
Flatten@Table[Range[p = Prime[2^k], NextPrime[p]  1], {k, 0, 11}] (* Ivan Neretin, Jan 21 2017 *)


PROG

(PARI) isok(n) = my(pi = primepi(n)); (pi==1)  (pi==2)  (ispower(primepi(n), , &k) && (k==2)); \\ Michel Marcus, Jan 23 2017


CROSSREFS

Cf. A000079, A000720, A015910, A073797, A073799.
Sequence in context: A112965 A152979 A070942 * A124375 A287664 A037080
Adjacent sequences: A073795 A073796 A073797 * A073799 A073800 A073801


KEYWORD

nonn


AUTHOR

Labos Elemer, Aug 14 2002


EXTENSIONS

Edited by Dean Hickerson, Aug 15 2002


STATUS

approved



