login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073751 Prime numbers that when multiplied in order yield the sequence of colossally abundant numbers A004490. 9

%I

%S 2,3,2,5,2,3,7,2,11,13,2,3,5,17,19,23,2,29,31,7,3,37,41,43,2,47,53,59,

%T 5,61,67,71,73,11,79,2,83,3,89,97,13,101,103,107,109,113,127,131,137,

%U 139,2,149,151,7,157,163,167,17,173,179,181,191,193,197,199,19,211,3

%N Prime numbers that when multiplied in order yield the sequence of colossally abundant numbers A004490.

%C The Mathematica program presents a very fast method of computing the factors of colossally abundant numbers. The 100th number has a sigma[n]/n ratio of 10.5681.

%C This calculation assumes that the ratio of consecutive colossally abundant numbers is always prime, which is implied by a conjecture mentioned in Lagarias' paper.

%C The ratio of consecutive colossally abundant numbers is prime for at least the first 10^7 terms. The 10^7-th term is a 77908696-digit number which has a sigma(n)/n value of 33.849.

%C Alaoglu and Erdős´s paper proves that the quotient of two consecutive colossally abundant numbers is either a prime or the product of two distinct primes.

%C ( Start )

%C First occurrence of the n_th prime: 1, 2, 4, 7, 9, 10, 14, 15, 16, 18, 19, 22, 23, 24, 26, 27, 28, 30, 31, 32, ..., .

%C Positions of 2: 1, 3, 5, 8, 11, 17, 25, 36, 51, 77, 114, 178, 282, 461, 759, 1286, 2200, 3812, 6664, ..., .

%C Positions of 3: 2, 6, 12, 21, 38, 68, 132, 271, 595, 1356, 3191, 7775, ..., . ( End ) _Robert G. Wilson v_, May 30 2014

%H T. D. Noe, <a href="/A073751/b073751.txt">Table of n, a(n) for n=1..10000</a>

%H L. Alaoglu and P. Erdos, <a href="http://www.renyi.hu/~p_erdos/1944-03.pdf">On highly composite and similar numbers,</a> Trans. Amer. Math. Soc., 56 (1944), 448-469. <a href="http://upforthecount.com/math/errata.html">Errata</a>

%H Keith Briggs, <a href="http://projecteuclid.org/euclid.em/1175789744">Abundant numbers and the Riemann Hypothesis</a>, Experimental Math., Vol. 16 (2006), p. 251-256.

%H Young Ju Choie; Nicolas Lichiardopol; Pieter Moree; Patrick Solé, <a href="http://www.numdam.org/item?id=JTNB_2007__19_2_357_0">On Robin’s criterion for the Riemann hypothesis</a>, Journal de théorie des nombres de Bordeaux, 19 no. 2 (2007), p. 357-372

%H J. C. Lagarias, <a href="http://arXiv.org/abs/math.NT/0008177">An elementary problem equivalent to the Riemann hypothesis</a>, Am. Math. Monthly 109 (#6, 2002), 534-543.

%H T. Schwabhäuser, <a href="http://arxiv.org/abs/1308.3678">Preventing Exceptions to Robin's Inequality</a>, arXiv preprint arXiv:1308.3678, 2013

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ColossallyAbundantNumber.html">Colossally Abundant Number</a>

%t pFactor[f_List] := Module[{p=f[[1]], k=f[[2]]}, N[Log[(p^(k+2)-1)/(p^(k+1)-1)]/Log[p]]-1]; maxN=100; f={{2, 1}, {3, 0}}; primes=1; lst={2}; x=Table[pFactor[f[[i]]], {i, primes+1}]; For[n=2, n<=maxN, n++, i=Position[x, Max[x]][[1, 1]]; AppendTo[lst, f[[i, 1]]]; f[[i, 2]]++; If[i>primes, primes++; AppendTo[f, {Prime[i+1], 0}]; AppendTo[x, pFactor[f[[ -1]]]]]; x[[i]]=pFactor[f[[i]]]]; lst

%Y Cf. A004490.

%K nonn

%O 1,1

%A _T. D. Noe_, Aug 07 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 24 14:48 EST 2014. Contains 249899 sequences.